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IN TROD UC TION

Due to the widespread use of pulse code modulation (PCM) for

data transmission, there is considerable interest in the improvement

of the demodulation process. Most present day demodulators demodu-

late a received PCM signal by considering one bit of each word at a

time, and therefore make no use of the statistical dependence between

data samples, although for reasonable interpolation errors, the re-

quired sampling rates are sufficiently high to give a high correlation

between samples in many applications. For example, it is shown in

Appendix I that when 6-bit words are used to transmit second order

Butterworth data, the required sampling rates are such that the cor-

relation coefficient between adjacent samples is greater than .98 and

the correlation coefficient between every second sample is greater

than .95. One would expect that such high correlation between data

samples could be used to improve the demodulation process. Smith

[S1, $2] 1 has shown that this high correlation between samples can be

used to improve the word-error performance of the demodulator that

minimizes the probability of an error in the demodulation process.

This dissertation will treat the use of statistical dependence be-

tween PCM data samples in several optimal and suboptimal demodu-

lators. Three optimal demodulators will be investigated: the mini-

mum error-probability (Pe) demodulator, the minimum mean-absolute

-error (MAE) demodulator, and the minimum mean-square-error

(MSE) demodulator. Three suboptimal demodulation schemes will also

be investigated.

The following restrictions and assumptions, which are essentially

those used by Smith IS1, SZ], will be adhered to in this analysis. Only

single data sources will be considered, but the extension to multiple

I Letter-number combinations in brackets refer to references listed in

the bibliography.



data sources is obvious. The analog data samples will be assumed to

come from a Gaussian random process with known autocorrelation.

The assumption of Gaussian data is immaterial in the general develop-

ment of the demodulators (Chapter l}, and becomes important only

when the simulation on the computer is begun (Chapter 3}. As will be

apparent in Chapter 3, data samples from any random process could

be considered, provided there is a way to generate correlated samples

from the distribution on the computer and some way to evaluate the

multivariate probability for a given set of quantized data samples. The

channel noise will be considered additive only, and independent of the

transmitted signal. The noise is further assumed to be bandlimited,

white, Gaussian noise. Although this last assumption was made so

that analytic progress is possible, in practice the noise power spectrum

is essentially flat out to some arbitrarily high frequency and is band-

limited by the equipment. Therefore, the assumption of bandlimited

white noise is a reasonable one to make.

In evaluating the performance of the demodulators, the demodu-

lated signal will be compared with the quantized data sample that was

transmitted, rather than with the original analog data sample. This

is reasonable since quantization errors before transmission should not

be charged to the demodulator.



CHAPTER1

OPTIMAL DEMODULATION OF BINARY PCM WAVEFORMS

The notation used is that indicated in figure 1-1. x(t) is the ana-

log data signal that will be transmitted using binary PCM signals. As

mentioned in the introduction, x(t) is assumed to be a stationary Gaus-

sian random process with specified autocorrelation function from which

are obtained the correlation coefficients Pij between samples x.*1and

x.*. The samples x*(t} of x{t) are quantized into discrete value data,
J

Y(t). This discrete-value data is then coded into serial binary PCM

signals, y(t). Gaussian white noise, n(t}, is added in the transmission

process, so that the received signal z(t) is the sum of y(t) and n(t}.
^

z(t} is then demodulated to get Y{t), the estimate of Y(t}. The remain-

der of the process to get _{t), will not be considered as part of the de-

modulation process in this dissertation, although it certainly plays an

important role in the overall data transmission system. The next-to-

last box in the block diagram is not labeled since in some cases (e. g.,

the minimum MSE demodulator) the digital-to-analog conversion is

accomplished in the demodulator, and in most actual systems the
A

sampled signal Ax*(t)is taken equal to Y(t).

The binary PCM signal, y(t), will be considered to be a series of

equal energy waveforms gl (t} or g2(t}, g1(t} representing a "yes" bit,

and g2{t} a "no" bit. This is easily generalized to other bit waveforms

(See Appendix II}. Let T W be the time required to transmit one PCM

word, and let m be the number of bits in each word. Then each "word-

time", T W, is divided into m equal parts called "bit-times" and de-

noted by T B.

Zm ZmIn an m-bit binary code there are quantization levels, or

possible values of Y. For simplicity we take these values of Y to be

3
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the integers k = O, 1.... , Zm - i and scale x(t) accordingly. Let the

joint probability of the quantized value, Y., of the jth sample and the
J

received signal z(t)be given by

fY.z(k' z(t))= f ]z(klz(t))fz (z(t))

-- fzlyj( z(t) Ik) fyj(k)

where the probability is discrete in k and a multivariant density in a

time sampled representation of z(t).

Let us now consider the three types of optimal demodulators that

will be analyzed in this dissertation. The minimum error-probability

demodulator minimizes the average probability of error, P . If the
e

A

demodulation operator is given by Y.[z(t)], then the error-probability
A J

for a particular z(t) is 1- fyjlz(Yj[z(t)]lz(t)) and

P = 1
e

z

A

- fy.iz(Yj[z(t)] ]z(t)))fz(Z(t)) dz
J

= l
A- fy.iz(Yj[z(t)]Iz(t))fz(Z(t))dz.

z J

A

Clearly, this is minimized by choosing Y.[z(t)] to maximize
J

/\

fy iz(Yj[z(t)]iz(t)) for every z(t). Thus the minimum error-probability
J

demodulator is described by

^ [z(t)] =k where k maximizes fyjYjl iz(klz(t)). (l- l)

A
This Y. also maximizes the probability of correct demodulation and it

jl

is often called the maximum inverse-probability demodulator.

The mean absolute error (MAE) of a demodulator is given by

A

MAE = E[IY.- Y.[z(t)]
] J
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where E[

probabilities

2m_l

MAE=_
z k=O

] denotes the expectation operation. In terms of the previous

A

Ik - Yj[z(t)] Ify.z(k, z(t)) dz
J

Clearly,

2 m- l

_ ik A ifyjlz (= - Yj[z(t)] klz(t))f(z(t))dz.
z k=0 z

A

this is minimized by choosing Yj[z(t)] to minimize

2m_l
A

Ik - Yj[z(t)] Ifyj}z(klz(t))k=0

for every z(t). It is well known [B1] that the required _j[z(t)] is given

by the median of the conditional distribution fyjlz(klz(t)) where the

median of a real-valued random variable v is defined as follows. Let

A be the real line, let

m_ = inf{a e AlP(v-<- a) ->_l/Z}

m 2 = sup{a _AIP(v_- > a) =>1/2}

and let Ibe the closed interval[m I,m2]. Then any m£1 is called a

median of the random variable v. The set of z(t} giving non-unique

medians has probability zero in this application.

MAE demodulator is described by

A

Yj2 [z(t)] = median of fyjlz(klz(t}). (i-2)

The mean square error (MSE) of a demodulator is given by

Thus the minimum

Zm- 1 ^

MSE = PJ_ _ {k-Yj[z(t)])zfyjlz(klz(t))f (z{t))dz
z k=O z

A

This is minimized by choosing Yj[z(t)] to minimize
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2m_l
A Z

__w (k - Y.[z(t)]) fy.[z(k[z(t))
k=O J j

A

for every z(t). This is accomplished by taking Yj[z(t)]

mean of the conditional distribution

2m_l
A

Yj3[z(t)] = _ k fy.[z(k[z(t)).
k=0 ]

equal to the

(1-3)

Equations 1-1, 1-2, and 1-3 all involve the conditional probability,

fyj[z(k[z(t)). Smith has derived an expression for this conditional prob-

ability [ S1] and this derivation is repeated here for convenience. In

the following, the first subscript refers to the word position in the PCM

signal sequence, and the second subscript to the bit position in the PCM

word (e. g., Yir is the transmitted signal during the rth bit time of the

ith word time).

The conditional probability of the sequence of quantized data

samples, Y1 ..... Y given z 1..... zn is given byn

fYz (YI ..... Yn' zl ..... zn)

fy[ (YI ..... Yn[Zl ..... zn) =z f(z, ..... z)
z n

fz[y( zl ..... z [Vl ..... Yn) fy(Y, ..... Yn )= n

fz ( zl ..... zn)
( 1 -4)

Since there is a unique correspondence between Y. and Yi1

fz[y( Z I ...... Zn[Y1 ..... Yn ) = fzy[ (zl ..... Zn[Yl ..... Yn ) ( 1 -5)

The channel noise, n, was assumed additive and independent of the

transmitted signal so that

fz[y(zl .... ,Zn_l ..... yn )=fn(Zl - Yl .... , Zn -yn ) (I-6)



With proper sampling, bandlimited white Gaussian noise is independent

from sample to sample. Therefore,

fn (zl - Yl ..... Zn - Yn) = fn (zl -yl}'''fn {z n - Yn ) (1-7)

Woodward has shown [Wl] that

-l

_ 1 exP{2___n _ (zi _yi}Zdt}fn ( z i - yi ) _

n T w

( i -8)

idt is aExpanding the integral in equation i-8 and noting that S Yi

T w

constant for the equal energy signals that we are considering and

z'Zldt is a function only of zi, we have

T w

{';fn (z i - yi ) = K l(zi} exp _-r ziYidt
n

T w

where K1(zi) is some function of z..i

(1-9}

The integral in equation i-9 can be expanded as

S ziy i dt = _ Zir Yir
r=l

T w T B

dt ( 1 - 10}

Using equations 1-6 through i-i0,

n
fzly(Zl ..... ZnlY1 ..... Yn ) =Kz(z)_ exp {-_1n r=l ' ZirYir

i =1 TB

equation 1-5 can be written as

(I-Ii)

where K2(z) is a function of the received signals, zl, .... z .
n

The desired conditional probability is given by

fyj[z(klz(t)) =5 "'" 5 5 "'- E fyIz (Y, ..... Y. ,
• Y_U Y. _U Y_+£U] Y EU j-1j-1 n

k, Yj+I ..... Yn [zl ..... zn) (1-12)



where U is the set of all possible values (0, 1..... 2m - 1) of Y..
1

Denoting by Yi(k)r the rth bit of the PCM code corresponding to

Y.: = k and noting that fz(Z_, ...• z n) is only afunction of z, we can com-

bine equations 1-12, 1-11, and 1-4 to get

fyj[z (k[z(t))= _ ''" _ _ -.- _ fy(Y1 ..... Y. ,
• Y1 e'U Yj - 1CL: _ +l £U Y n£U j - 1

k• _+f...,Yn)-K3(z)K exp ZirYirdt
i=l _ r=l

i_j TB

exp

_-_n _ _ dt_r: 1 zj ry j (k) r

T B

2 m-1 2 m- 1 2 m- 1

= K_(z) E ... E E

it:0 _. =0 _ :0
J -1 j+:

2m_l

• .-_ fy(£1•...•£.
=0 J-I

n

• k• lj+ 1.... , In)

n _nn _ _ ZirYi(li)rdt_exp{_nn _ _•_ exp
i:l r=l r=l

i_j T B T B

ZjrYj(k) r dr}

(i-13)

Equations 1-1, 1-2• 1-3, and 1-13 completely specify the three

O " . m
phmal demodulators. F:rst the 2 values of fy [z would be calculated

f J
rom equation 1-13. The minimum PE demodulator would simply choose

the value of Y. that corresponds to the largest value of the conditional
J

probability• f_ Iz. The minimum MAE demodulator would sum in order
^

the values of fyjlz, taking Y. to be the value of Y. that corresponds toj2 j

the value of the conditional probability that makes the sum equal to or

just go past . 5. The minimum MSE demodulator would perform the

operation indicated by equation 1-3 to get _j3" It should be noted that

the minimum PE and MAE demodulators can only select 9. to be one of
J
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the possible values of Y.,
J

demodulator.

while this is not true for the minimum MSE



CHAPTER 2

PERFORMANCE EVALUATION FOR THE OPTIMAL

DEMODULATORS

In Chapter 1 the equations describing the three optimal demodu-

lators that we are considering were developed. To evaluate the per-

formance of these demodulators, it is necessary to have some criteria

of goodness with which to measure their performance. The two most

widely used criteria are the MAE and the MSE (the root-mean-square-

error (RMSE) is often used in place of the MSE), and these two measures

of demodulator performance will be used in this analysis.

The error in the demodulation of the PCM signal during the jth

word time, e., is given by
]

A

e. = Y. - Y. (2-1)
J 3 ]

and

MAE = E{ lej I}

MSE = E{e. z }
3

A

: E{ IY.- Y I} (2-2a)
3 J

= E{(Y. -3 _j)z} (2-2b)

where, as before, E represents the expectation operator. For simpli-

city, we will consider only the MAE in what follows, noting that there is

a parallel development for the MSE. Equation 2-2a can be written as

co oo

MAE : _ .... Y.I zl ..... Zn) dzl .... dz3 ' n
Y._U -=o - 3

3

oo

_''' _ ff'''_IYj -_jlfYz(YI ..... Yn' z1' .... Zn)dZ1,...,dz n
YI£U Y CLT__o -

n

ii
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oO cO

.... z: ..... z [Y1..... Y )
Y:_U n n

n

•dzl ..... dZn fy(Y1 ..... Yn )

Since z. = Yi + n., and there is a one-to-one correspondence between Y.
1 1 1

and Yi' integration over the z space is equivalent to integration over the

n space. Using the independence of y and n,

MAE =

cO oO

__w "''y_j "'" [[ -Y.Ifn(n: .... ,nn)]dn 1 .... dnyl_u 3 " n
-o0 -o0n

• fy(Y, .... , Y ) (2-3)n

A

where Y. is a function of Y1 ..... Y and n: ..... n . Since n. can be
3 n n :

broken down into m components, this expression represents 2mn

summations of an n •m dimensional integral. Attempts to analytically

evaluate equation 2-3 prove fruitless, even in the most analytically

tractable case of the minimum MSE demodulator.

Numerical integration of equation 2-3 could be used. If k sub-

intervals of each n. were used in the integration, then this equation:r

would represent at least k nm evaluations of the quantity in the brackets,
^

each of which includes a determination of Y. by equations 1-13 and 1-1,
3

1-2, or 1-3. Since there are Zmn possible combinations of the Y's,

this is a minimum total of 2 nm • k nm• 2 m(n-0 ' m or m2 {zmn-m) knm

calculations for one demodulator at one set of correlation coefficients

and signal-to-noise ratio• For n = 2 and m = 6, this is 1, 572, 864k nm

calculations. It is easy to see that numerical integration is practical

only in trivial, non-interesting cases.

Kahn [K1] points out that Monte Carlo simulation offers a way to
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considerably reduce the number of calculations to evaluate expressions

such as equation 2-3. In the Monte Carlo simulation, a number, N, of

sets of samples of n. and Y., i = 1..... n, r = l ..... m, are picked
ir 1

according to the probability density function fn and probabilities fy.

Using this set of samples, the absolute error, l ej I, is calculated by

use of the equations developed in Chapter i. Denoting by l ej Ik the ab-

solute error corresponding to the kth set of samples, the MAE can be

estimated by
N

^ _ 1 _ lejl (2-4)MAEI N k
k=1

Since the expected value of each l ejl k is the MAE, this estimate is un-

biased. A measure of the accuracy of the estimate is given by the

variance, V, which is given by

E{ A A: [MAE 1 - E(MAE 1)]z}

^ 2}= E{(MAE 1 - MAE)

A A
= E{(MAEI) 2 - ZMAE1 MAE +MAE 2}

A

= E{(MAE 1)z} _ MAE z

}: E E E lejlklej[ _ " MAEZ
- k=l _=1

N N

E ejlk+ E E Iklejl _k=1 _=, [ej
- MAE 2

Since by the selection method sets of samples are independent from

other sets

V ^ 1 ,lej z} N - 1 MAEZ _ MAEZMAE, : _E{ I + N

V A 1
MAE, = _[E{lej] 2} - MAE z]

(2-5)
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The standard deviation of the estimates, _M_E' equals the square

root of the variance, so _ varies according to I/4-N . Consequently, any

accuracy that is desired can be obtained by taking N sufficiently large.

viewpoint} estimators.

estimated by

The number of samples that must be taken for a given accuracy

can be reduced by using more efficient (from the Monte Carlo simulation

For example, the absolute error, [ej [, can be

2m_l

J lz( Iz(t)) (z-6)

Since [eAj[probably has less dispersion than [ej ], it should be a more

efficient estimator for the Monte Carlo simulation, with

N

MAE2 : ] (2-7)
k=l

Since the expected value of [@j Ik is equal to the MAE, this estimate is

also unbiased and its variance is given by

_ A 2 2
1 [E{(MAE2 ) } _ (MAE) ] (2-8)

VM_Ez N

If the values of fy. [z(_ [z(t)) are available in the demodulator (as theyJ ^
will be with the optimal demodulators} then this new estimate (MAE2)

is more efficient and should be used.

Kahn [K1] also points out that the required number of samples

can be further reduced by "importance sampling" Smith used this

technique in his work to reduce his overall computer time to a reason-

able amount [$2]. In importance sampling, instead of choosing samples

according to the probability dens ity function fn and probability fy, samples

are selected according to a modified probability density function f+
Yn

(Y1 ..... Yn' nl .... , nn). Equation 2-3 becomes
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MAE =
oO

Y_£U Y U_
n

[ej Ifn(n 1 ..... nn) fy(y I ..... yn)• , , _ ..... _ .....

- fyn (Y1, • "'Yn' nl' "'nn)

+

• fYn (YI .... Yn' nl ..... n n) dnl ..... dn ( 2-9)
n

Denoting by {

the kth set of samples, the estimate of the MAE becomes

^ 1 _ _ lej'fnfY_kMAE 3 = _ k=l f+
Yn

}k the value of the expression in braces corresponding to

Each sample of the absolute error is therefore weighted by

(2-10)

fY fn

+

fYn

It will be noted that this estimate is still unbiased, and the variance is

given by
2

VM_E3- lIE(('eJ'fYfn)_ -(MAE)Z)+

fYn

(2-11)

Kahn points out that if

f+ _ l ejlfY fn
Yn MAE

then the variance is zero and only one sample is needed to accurately
+

determine the MAE. However, finding this optimal fYn requires know-

ing in advance the quantity, MAE, which we want to determine, but this
+

shows that theoretically it is possible to select fYn such that the var-

iance of the estimate is reduced considerably•

If importance sampling can be used without incurring large in-

creases in program complexity and computer time to compute each

sample value of the absolute error, then it can be a valuable aid in the

efficient estimation of theMAE by Monte Carlo methods• It should be

noted that I@jl can be used in place of lejl in equations 2-10 and 2-11
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when it is available.

Calculation of the variance requires knowledge of the quantity we

are trying to estimate. However, the variance can be estimated by

i Jej Jk - (MAEI)VM2Ex -- -N =x (2-12)

where J_jJ_, (JejJ+fy f _k' or (JOJJ+ fY fnJk

fYn fYn

is used in place of

jejj kz depending on which estimate we need the variance of

These equations can be summarized as

A

AE1 : lejl = IYj-Y. Ij

2m_l

fY fn
AE S = AE I +

fYn

fy f n

AE4 = AEz +

fYn

(2-13a)

(2-13b)

(2-13c)

(2-13d)

A 1 N

MAE.- __j (AEi) k1 N
k=l

V A - z
MAE. N -N 1 (AEi)k

1

A

- (MAE i) 23

(2-14)

(2-15)

and the parallel MSE equations by

A

SEx = (Yj - Yj)
(2-16a)

SEz

2m_l
A 2

_=0 J
fy Jz(_ J z(t))

J

(2- 16b)
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f f
Y n

= SEx + (2-16c)
fYn

fY fn
SE_ = SEz_ (2-16d)+

fYn

A 1 N

MSE._ - N _-J (SEi}k (2-17)
k=l

^ II N ^ IV A - _ z zMSE. N (SEi)k - (MSEi)
1 k=l

(2-18)

Due to difficulties in evaluating the MAE and MSE of the demodu-

lators investigated by analytical or numerical methods, a Monte Carlo

simulation was used to estimate these quantities. The specific way of

doing this for the optimal demodulators is discussed in the next chapter.

Monte Carlo methods were also used for two of the suboptimal demodu-

lators considered and are discussed in Chapter 5.



C HAPTER 3

COMPUTER SIMULATION OF THE OPTIMAL DEMODULATORS

Equations I-I, I-2, 1-3 and 1-13 involve operations ideally suited

to digital computers. As pointed out in Chapter 2, a Monte Carlo

simulation appears to offer the best approach to the evaluation of the

MAE and MSE for the three optimal demodulators that we are consider-

ing.

To accomplish this simulation, the data samples, x* ..... x*,
n

are picked from the proper distribution, quantized into the digital sig-

nals, YI .... 'Yn' and the Y. are then coded into binary PCM signals1

Noise samples are selected from the proper noise distribution and

added to the PCM signals to form the received signal. The 2m values

of fYjlz,are calculated by use of equation 1-13, and these are used in

equations 1-1, I-2, and 1-3 to get _. for each demodulator. Equations
J

2-13 and 2-16 are used to calculate the estimators for the absolute

error and the square error. This procedure is repeated N times and
A A

equations 2-14 and 2-17 are used to calculate the MAE and MSE. The

accuracy of these estimates can then be estimated from equations 2-15

and 2-18.

As was pointed out in the introduction, the data samples are

assumed to be normally distributed, with a specified correlation be-

tween samples. The following procedure was used to generate the data

samples on the computer. For n = 2, i.e., two words considered at a

time by the demodulator, the demodulator estimates Y2 using zl and z z .
* .

xl is picked from a normal distribution 1 with mean my and standard

Most large computer installations have random number generators in

their libraries, both for uniform and normal distributions. Such was

the case at the University of Michigan Computer Center where the

simulation of the optimal and suboptimal demodulators was done.

18
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deviation o-y. Then x* is picked from the conditional probability dis-

tribution of x2* given x 1 For joint normal data samples with corre-

lation coefficient O, the conditional probability density function is given

by .i. .i.

f (xT,x;)
X

,_ z_2p(x_,_my)(X_. _" my) +(x_: my) }

(xI my) _ _ a

l_ exp - Z&_(l -- p-_

exp

[xz_"- (my - pmy+ px_')] z

1 __ exp{- 2o-_(1 pZ) } (3-1)

.m.

Therefore, x z is selected from a normal distribution having mean

= my - pmy + pxl and standard deviation = o-y '4i- - pZ

For n : 3, the demodulator estimates Yz given z,, z z, and z13.

x z is selected from a normal (my, O-y) distribution, and x_" and x_' are

then selected from the normal distribution having a mean of my - pray

+ px z and a standard deviation of o-y Q1 - p z. The correlation coeffi-

cient between x_ '_" and Xz" and between x_" and x_" is p. The selection

method fixes the correlation coefficient between x, and x_', P,3, and it

is determined as follows.

PI3

"_ 2

E[_7 xD - my

Y

Now

E[x x ] = x_ x_'f {", x3)dxi" dx]"

-00 -¢0

1 In the majority of the applications of PCM demodulation there will be

no constraint to operate without a time delay.
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Since

and

then

yfx( ......f (x_', x'_) : x_", x_', x;') dx_"
X

-oO

...... _ fxl "1' _'_ f "1 ' _:_f (x_ x ,x ) : (xl x2,x f (x3 xa) f (x
x ' yz xy x

: fx_(X,lXDfx_(_'lx;I fx(X_")

oO _ cO

= fx_(Xl IXz) dx3 fx(Xa)E[x_' x_"] x 1 fxly(X3"[ Xz') axe'
-o0 -o0 -o0

oO

- o0

cO

ffmy( "" _"= ( 1 - p) + px_') 2fx(x )dx2"

2 {1 - 2p+ p2) + 2my(l - 9) pffx_f{x_:)dx_ _= my

-o0

z z + m 2
=m 2 (1 - 7.p + p2) + 7.m_(p - p2) + p (O-y y)Y

2 2

z +p_y= my

Cons equently

2 2

P_y
PI3 Z

O-y
-p

The extension to higher values of n is obvious, but is not con-

sidered here because of the excessive computer time required to simu-

late the demodulation for n > 3, as will be obvious in Chapter 4.
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Two different size PCM words are considered, three-bit words

(m = 3) and six-bit words (m = 6). For six-bit words, the data samples

are quantized according to figure 3-1a. Data samples outside the range

my + 2.6 0-y are assigned values of 0 or 63 and the interior range is
divided into equal parts corresponding to the signals 1 through 62. For

six-bit words then,

2m- 1
my - 2 - 31.5

my 31.5

CY Z.6 2.6 - 12. ll5

{3 -2)

For three-bit words, the first three bits of the six-bit words are used.

Figure 3-lb results, with

my =3.5

3

try 1.9803
- 1.515

(3 -3)

The signal power per bit time, S 2, is given by

S 2
1

T B
y z _ 1 ; z

gl (t) dt TB gz (t) dt

T B T B

( 3 -4)

A time average correlation, k, between g1(t) and g2(t) is defined by

ly
k - TB_z- gl(t) g2(t)dt (3-5)

T B

The root-mean-square (RMS) signal-to-noise ratio, S/N, is defined as

the square root of the ratio of the signal power to the noise power in a

bandwidth equal to the bit rate, i.e.,

(3 -6)

Consider the exponential expression in equation 1-13,
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my-_.6_y my- 2O-y

f (x)
X

I I I I I
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Figure 3- la.

32 34

my-Zy my=31.5 my+O-y my+2O-y my+2.6O-y
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/

!

/

2 3 4

6-bit Words

5 6

I

I I
61 63

l

m -o- my=3.5
my-l.9803_y Y Y my+_y my+l.9803O-y

Figure 3-lb. Quantization Intervals, 3-bit Words

Full
Scale
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exp
r=l

T B

Zir(t)Yi( _)r (t) dtiL (3-7)

This can be expanded to

exp
{_ _ ;(Yir(t)+n° (t))Yi(_)r(t)}r=_ ir dt

T B

where nir(t ) is the noise waveform during the bit time, T B.

= exp
_-_ Yir(t)Yi(_)r(t)dt +__l1 n 0-z nir(t)Yi(_) r(t) d (3-8)

TB n TB

Consider the first part of the expression in the brackets in the above

equation.

iI_-r Yir(t)Yi(_)r(t)dt =
n

T B

_TBS2
---'-2-- ,

o-
n

for matched bits

TBS2
k 2 , for unmatched bits

0-
n

The second part of the expression in brackets in equation 3-8 is a ran-

dom variable since it is the integral of a random process, nir(t ). This

random variable has mean 0 and variance:

V- _1 _' _ E{nir(t)Yi( _)r(t)n'lr( T)Yi( _) r(T)} dtdT

n TB TB

120-4 Yi(_)r (t) yi(_)r ('r) E{nir(t) nir (T)} dtdT

n TB TB

1
_ ; Yi(_)r(t)Yi(_)r (T) _Zn6(t -

n TB TB

T) dt d'r
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TBS2
Z

0-
n

Therefore, the expression in brackets in equation 3-8 reduces to

l _ K_(S/N) 2 + J, matched bits
7 yi(_)r(t)Zir(t)dt =

n TB _.k(S/N) 2 +J, unmatched bits

where J is a random variable with mean 0 and variance (S/N) 2 Smith

[$2] points out that the computer simulation can be accomplished most

simply by using g1(t) = +S/N and gz(t) = -S/N and selecting noise

samples, denoted by Vir, from a normal (0, I) distribution. For these

PCM waveforms k = -i. The generalization to arbitrary waveforms

and arbitrary k is given in Appendix If. Equation 3-7 becomes

exp _ ZirYi(_)rdt = exp (Yir + Vir)Yi(_) (3-9)
r=l 1

T B

where y.( .). equals either a plus Or minus S/N and V.lr is normal (0,i).

Therefore, after the quantization of x"_ into Yi' Y" is coded intoI i

a series of +l's. These are multiplied by S/N to form the Yir'S, and to

each of these products is added a sample from a Gaussian distribution

with mean 0 and standard deviation 1. This forms the quantity in paren-

thesis in the right side of equation 3-9, and the computer has all the

information that is needed to start the demodulation.

For the demodulation, fy.(f i ..... f j-l ' k, fj+1 .... , fn) is required.

For samples from a Gaussian distribution that we are considering

fy(_1 ..... _j-1'k' _j+1..... _n )

R_ R_ R k R_ R_
i j -1 j+l

fx (xl ..... Xn) dxl • • dx n

n
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where f is the multivariate Gaussian density function and R_. is the
X i

region where x. quantizes into _.. For the computer simulation• suffi-
1 1

cient accuracy is obtained by taking the value of f at the midpoint of
x

these regions• i.e.,

fY = fx k• _j+1, "" _n)(_i ..... _j_1• .•

For n = 2,

(_I-my)fy(_1,k) = K4 exp -

Z_Zp(_1_my)(k_my)+(k_my) z

2o--_-( 1- pZ i }

(3-10)

For n = 3• x_" and x 3 were chosen to have a correlation coefficient p

with x_"_. As shown before the correlation coefficient between x T and x_"

is pZ For this case

fx(Xl • xz, x3) --fx, Ix,, x3 (xl Ix,, x3) fx(Xz, x3)

= f Ixz) fx(Xz, X3)

fx(Xl,Xz) fx(Xz, x3)

fx(Xz)

Therefore

fy(_,,k) fy(k•_3)

fY(_'•k•_3) = fy(k) (3-1 1)

where fy(R I•k) and fy(k, _3) are given by equation 3-10 and

{ (k- my)Z_fy(k) = K s exp - " -z_
2_y

(3-12)

It should be noted here that samples from distributions other than

a Gaussian distribution could be used in the computer simulation. As

mentioned in the introduction_ a way of generating correlated samples

from the new distribution must be available for the computer. Most

large computers have available subroutines for generating pseudo-
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random numbers from a uniform or a Gaussian distribution. Kahn

[K2] discusses ways of using uniformly distributed random numbers to

generate samples from other distributions. In addition to generating

samples from the new distribution, a method must be available for

fY(_ ..... _n ) for use in the demodulator.calculating 1 ..... _3_ 1 , k, _j+l '

For small signal-to-noise ratios, the Monte Carlo simulation

gave reasonably accurate estimates of the MAE and MSE for the opti-

mal demodulators with a reasonable number of samples (and hence

reasonable lengths of computer time). However, for S/N larger than

1. 414, the number of samples (and computer time} required for

reasonable accuracy became excessive. Importance sampling was

used to improve the convergence of the estimation and therefore, re-

duce the computation time to a tractable amount.

As pointed out in Chapter 2, the modified sampling distribution,
+

fYn' should be taken proportional to lej Ifyf or (e.)2fyf n. These aren j
very complicated functions due to the complicated nature of the optimal

demodulators, but some indication of the approach to take to determine
+

a good but simple fYn can be gained by considering a simple example of

one-bit words taken two at a time (m = 1, n = Z). For this case Y1 and

Yz can take on the values of 0 or 1. Letting v 1 and v 2 take on various

values, SE2f n was plotted for the different combinations of Y1 and Y2-

Figure 3-2a shows the results for YI = 0 and Yz = 0 and figure 3-2b

shows the case where Y1 = 1, Y2 TM 0. For both YI and Y2 equal to 1

the plot is the same as figure 3-2a except reversed so the peak occurs

at approximately v I = -S/N, v 2 = -S/N. For YI = 0, Yz = 1 the reverse

of figure 3-2b occurs.

From these plots, it was decided to pick the noise samples from

a normal distribution with mean B and standard deviation A. This

noise sample v. was then given a sign opposite to that of the PCMlr

word bit to which it was added. This simple scheme approximates to
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SE2 fn

_ v 1

Figure 3-2a. SEzf for m -- 1, n = 2, YI = Yz = 0
n

v 2

SE2 fn

o

I /N

_.- v 1

Figure 3-2b. SEzf for m : I, n : 2, YI = I, Yz = 0
n
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some degree the plots in figure 3-2, yet can be accomplished in the

computer simulation with a minimum of program complexity and extra

running time.

Denoting the weighting of each sample by G,

G _

fnfy f f fnY n

+ f+ + +
fYn nIYfY fn[Y

n m

f+ 1

nIY =_ ]_ _f_-A
i=lr=l

we have

+

since fy = fy. The conditional distribution of n given Y is a normal

distribution centered at plus or minus B, depending on whether Yir is

positive or negative. Taking v. as the value of the noise sample beforelr

the sign is assigned, then

(v. - B) 2

exp - gAZ

and

n m

GMR
i:l r=l

(Vir) 2 exp(- )

m n m n
2

{ ( - E "Ev" -2B E "E Vir}
mnBZ. [ (I A2) r=l 1=1 lr r=11=1

= A nm exp 2A z fexp 2A z

(3-13)

The best value of A and B were determined for each p and S/N by trial

simulations on the computer. The use of this scheme of importance

sampling gave a reduction of the number of sample sets required for a

specified accuracy by a factor of up to 4.

The computer program for the optimal demodulator simulation is

discussed in Table A-3-2 of Appendix III. The results of the simula-

tion are discussed in the next chapter.



CHAPTER 4

OPTIMAL DEMODULATOR PERFORMANCE

The quantization error for 3 and 6-bit data is developed in

Appendix I. Correlation coefficients for Butterworth data were also

determined in this Appendix for 1% (6-bit} data and 10%(3-bit} data

(see Table A-l-l}. Based on these correlation coefficients, for n = 2

(two words} it was decided to run the Monte Carlo simulation of the

optimal demodulators on the digital computer for correlation coeffi-

cients of .95, .98, and .995 for 6-bit words and p's of .9, .95, and

.98 for 3-bit words. S/N_s starting at .707 and going up to those that

gave MAE_s or RMSE's near the quantization error were used, since

the performance is limited by the quantization error. This meant

going up to a S/N of 2.83 for 6-bit words and a S/N of 2.0 for 3-bit

words.

Some data was also run off for the three word case (n = 3}, how-

ever due to the very long running time on the computer for this pro-

gram, this was only done for 3-bit words. Two runs were made for

each S/N, at correlation coefficients of . 95 and .98.

For comparison, the MAE and RMSE for the optimal demodulators

was computed for the case where only one word was used in the de-

modulation process (n = l}, for the same S/N's used in the two and

three word case. These values were also used to estimate the de-

modulator performance for p = l, as discussed in the third paragraph

below.

There was a necessary compromise between the desired accuracy

of the results and the available computer time. Although the simula-

tion was done on the University of Michigan IBM 7090 Computer

29
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System, a comparatively high speed computer, for feasible running

times on the computer it was necessary to limit the accuracy to having

the estimate of two standard deviations (equations 2-15 and 2-18) be

less than i0% of the estimated value of the MAE and MSE. Since the
A A

MAE and MSE have an asymptotically normal distribution I , we will

then have a 95% confidence level that the true result is within 10% of

the estimated value. This was slipped to around 20% for a S/N of

2.83 due to the extremely large number of iterations required. The

required computer times are given in Table A-4-8 of Appendix IV.

The optimal demodulator results for the l, 2, and 3 word cases

are given in Tables A-4-Za, A-4-3a, and A-4-4a of Appendix IV. In-

cluded in these tables are the number of iterations required (N) and

the values of A and B where importance sampling was used. The

A A A A

values of 2_ are given for the MAE and RMSE (for the RMSE, 2_M_ E
A

was used to compute the high and low values of the RMSE, and the
A

largest deviation from the RMSE was considered as 2_RMSE }.A The re-
A

sults (MAE, RM_E, 2 A) are normalized by dividing by the peak-to-peak

signal {63 for 6-bit words_ 7 for 3-bit words).

For p = I, equation 1-13 reduces to

klz(t)) = K3{z) fy (k) exp " 1 ._ ZirYj(k) r
j r=l i=i

B

since fy(tl ..... t° ,k, tj+ I .... , in) equals zero unless all its argu-3-i
ments are identical. This is equivalent to the expression obtained for

n

the one word case {n = l) with _i_--Iz.lr substituted for Zjr, or an averag-

ing of the received PCM words. For n = Z, there is therefore a

quadrupling of the apparent signal power, while, due to the independ-

ence of the additive noise, the noise power is increased only by 2.

I This is the essence of the central limit theorem of probability theory

[Cl].
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This means a power savings of 3 clb when two received words are

averaged. For n = 3 the power savings is 3 or 4.77 db. This allows

us to plot the p = 1, n = 2, line 3 db to the left of the n = 1, optimal

demodulation line on plots of the MAE or RMSE against the S/N in db.

The n = 3, p = 1, line is, by the same reasoning, 4.77 db to the left of

the n = 1 line on these plots.

It is also convenient for comparison purposes to plot the per-

formance of present day PCM demodulators that use bit-by-bit corre-

lation of the received waveforms with the known signal waveforms

gl (t) and g2(t) (or fl(t) and f2(t) in the general case (see Appendix II))
A

to determine the estimation of the transmitted bit, Yir" For this type

of demodulator, the probability of an error in a bit is equal to the

probability that the integral of the ch_xmel noise over the bit time is

greater than and of opposite sign to the integral of the signal. By the

reasoning of Chapter 3, this is equivalent to the probability that a noise

sample from a normal (0,1) distribution is larger than ±S/N but with

the opposite sign, values of which can be found from standard statisti-

cal tables since there is an equal probability that the transmitted bit

is equal to a plus or minus S/N. The probability of a certain size

error is then found by summing the product of the probability of each

different combination of bit errors that will give that size error and

the probability that the necessary signal was transmitted, over all

possible combinations that give this size error. The MAE (or MSE) is

then the sum of the probability of an error of size i times i (or i 2 for

the MSE) for all i° The computer program to do this is given in Table

A-3-1 of Appendix III and the results for both 3-bit and 6-bit words are

given in Table A-4-1 of Appendix IV.

These results of the computer simulation for the three optimal

demodulators are plotted on figures 4-1 through 4-9 vs. the S/N in db.
^

The MAE and RMASE are normalized by the peak-to-peak (P-P) signal.
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A A

Figures 4-1 through 4-6 show the normalized MAE and RMSE for 6-bit

words for each of the three optimal demodulators. The results for bit-

by-bit demodulation are also shown on these plots. Figure 4.7 shows
A

comparison of the MAE and RIV_SE of the three optimal demodulators

A
for p = .98. Figure 4.8 and 4.9 show the M_E and RMSE of the mini-

mum MAE demodulator and the minimum MSE demodulator respec-

tively for 3-bit words. In addition to the bit-by-bit demodulation re-

sults, the results for three words (n = 3) are shown. The quantization

error is also shown on all these graphs as a reference level.

It is evident fromthese graphs that the minimum P and minimum
e

MAE demodulators perform similarly, while the performance of the

minimum MSE demodulator has a somewhat different behavior. As

pointed out before, the minimum P and MAE demodulators can only
e

A

give discrete (i.e., a possible value of Yz) values of Y2, while the
A

minimum MSE demodulator gives continuous values of Y2- Also, a

comparison of figures 4-3 and 4-8 and figures 4-6 and 4-9 shc_vs that

the performance of the 3-bit optimal demodulators is quite similar to

the 6-bit optimal demodulators, close enough to use less expensive (in

terms of computer time) 3-bit Monte Carlo simulations to predict

trends in 6-bit (and longer) optimal demodulators.

It is also evident from these graphs that for high correlation co-

efficients, the optimal demodulators give a performance approaching

the p = 1 line for the number of words considered. Improvement in

performance is possible by considering more words in each demodula-

tion, but from equation 1-13 it is obvious that an increase in n will

greatly increase the demodulation time. In the simulation programs,

an increase in n from 2 to 3 increased the computer running time by a

factor of around four (see Table A-4-8 of Appendix IV).

Although we have been discussing PCM demodulation when the

system parameters (word size, S/N, etc.) are fixed, the system
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designer can use the performance results of the optimal demodulators

in designing the system he needs. For example, let us fix the maximum

transmitter power, the noise power, and the word time, T w. If we go

from 6-bit words to 3-bit words, the S/N is increased by 3 db since

each bit is transmitted twice as long with 3-bit words. Let us further

assume that the sampling rates are such that the expected correlation

coefficient between adjacent data samples will be .95. For a compari-

son of the optimal 6-bit 2-word system with the optimal 2 and 3-word

3-bit systems figure 4-10 results, where the abscissa is the 6-bit S/N

in db and the values are normalized by 2 m so that the RMSE comparison

is exact. The 6-bit system S/N needed for a demodulation RMSE equal

to the quantization error of the 3-bit system is 5.3 db, while the two-

word optimal 3-bit system needs a (_-bit) S/N of 2.7 db, and the three-

word 3-bit optimal system, 1.2 db. So, as long as the RMSE is speci-

fied at or above the 3-bit quantization error, the 3-bit system requires

less transmitter power to obtain this RMSE. Of course, if the RMSE

is specified lower than the 3-bit quantization error, then a larger num-

ber of bits per word must be used. The system designer would also

compare 4 and 5-bit systems with the 6-bit system if the RMSE is

specified between the 3-bit and 6-bit quantization errors.

Any discussion of the performance of the optimal demodulators

would be incomplete without reference to their bias and robustness.

These properties of the three optimal demodulators were estimated

with a Monte Carlo simulation for the 2 word case. Trends to other

values of n should be obvious.

For all of the three optimal demodulators, the expected value of
A

Yz over all possible values of Yz is equal to the mean value of Yz, so

the demodulators are unbiased. However, for each particular value of

Yz_ there is a bias in the demodulators which will be a function of the

signal-to-noise ratio and the correlation coefficient between words.
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Optimal Demodulation, m = 6, n = 2, p = .95

O Optimal Demodulation, m = 3, p = 2, p = .95

Demodulatk)n, m = 3, n = 3, Pxz =

0 3

Figure 4-10. System Design Comparison.

• _5, Px3 = .9025
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To accomplish the Monte Carlo simulation which determines this bias,

the computer program for the optimal demodulator simulation (Table

A-3-2, Appendix lID was modified so that the desired value of ¥2 is

read in and YI is selected from the proper conditional distribution based
^

on Y2 • Y2 is then found for each of the three optimal demodulators and

averaged over N iterations. The program was additionally modified to

give an estimate of the variance of the estimate of the average _2.

Since the demodulators are symmetrical about the mean value of Y2,

no values of Yz higher than my were used in the simulation. Plots for

_ A
values greater than my are obtained by plotting 2 m I - E(Y2) opposite

2 m - l - Y2- The results of this simulation are given in Tables A-4-2b,

A-4-3b, and A-4-4b of Appendix IV for correlation coefficients of . 95

and .995 for 6-bit words, and.9 and .95 for 3-bit words.

Figure 4-11 shows this bias for the 6-bit, minimum MAE demodu-

lator, when p = . 95, figure 4-12 for the 6-bit minimum MSE demodula-

tor for p = .95, and figure 4-13 for the 3-bit minimum MSE demodula-

tor for a p of .95. Examination of figures 4-12 and 4-13 again shows

that 3-bit demodulator simulations can be used to accurately predict

trends in 6-bit and larger optimal demodulators.

There are other types of bias that may be considered. For ex-

ample, one may be interested in the demodulator bias when the same

, = • = . It would besignal is transmitted each time, i.e. Y_ = Y2 "" Yn

expected that there would be somewhat less bias than that shown in

figures 4-i1 through 4-13, and the bias in this ease could easily be

evaluated by means of a Monte Carlo simulation.

To estimate the robustness of the optimal demodulators, the ori-

ginal optimal demodulator program was modified to read in two values

each of the S/N and p, an actual S/N and p to be used in generating the

received waveforms, z. , and a demodulator value of S/N and p to be
ir

A

used in the demodulation to get Y2- The program had to be further
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Monte Carlo results are shown with dashed lines and have a 95%
confidence level of < 3.5.

7O
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3O

I0

I0 20 30 40 50 60

Yz

7O

Figure 4-11. Bias, Minimum MAE Demodulator, n = 2, m = 6, p = .95.
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Monte Carlo results are shown with dashed lines and have a 95%
confidence level of < 3.5.
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Figure 4-12. Bias, Minimum MSE Demodulator, n = 2, m = 6, p = .95.
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Monte Carlo results are shown with dashed lines and have a 95%

confidence level of < . 18.

<_

0 1 2 3 4 5 6 7

Y2

Figure 4-13. Bias, Minimum MSE Demodulator, n = 2, m = 3, p = .95.



48

modified to use equations 2-13a and 2-16a since the computer values of

fyjlz(k[z(t)),are no longer the true values for use in equations 2-13b

and Z-16b. Since the accuracy was decreased by this last change, only

3-bit data was run to estimate the robustness about the p = .9 5 line of

optimal demodulation. The results for the three optimal demodulators

are given in Tables A-4-2c, _A-4-3c, and A-4-4c of Appendix IV. The
A A

MAE robustness of the minimum MAE demodulator and the RMSE ro-

bustness of the minimum MSE demodulator are shown on figure 4-14,

referenced to the optimal demodulator curves from figures 4-8 and 4-9

for n = 2, p = .95. As can be seen from this figure, the optimal de-

modulators are quite robust even though the S/N may be off as much as

3 db and the value of p may be off as far as .9 or .98.

Equations 1-1, i-2, 1-3 and 1-13 which determine the three opti-

mal demodulators show that these demodulators would be quite complex

and expensive to build. Also, due to the large number of operations in

equation 1-13, on-line demodulation will be impossible until much

faster computer systems are available, particularly for values of n

greater than 1. Several suboptimal demodulators that take advantage

of the high correlation between data samples, yet are faster and less

expensive to build than the optimal demodulators, are discussed in the

next chapter.
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Exact data is shown with solid lines. Monte Carlo results are shown
with dashed lines. For Monte Carlo data, 95% confidence level is
approximately 10% for S/N's up to 6 db and approximately Z0% for

S/N's > 6 db. _ _ , .........
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RMSE, Minimum MSE Demodulator, p = .95

MAE, Minimum MAE Demodulator, p = .95
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Figure 4-14.Robustnessofthe0ptimal Demodulators, n = 2, m = 3, Dem. p = .95.



CHAPTER 5

SUBOPTIMAL PCM DEMODULATION

Considerable improvement in binary PCM demodulation is pos-

sible by the use of the optimal demodulators discussed in the first four

chapters, and this improvement increases with the number of words

(n) considered at one time in the demodulation process. However, as

pointed out in Chapter 4, the optimal demodulators are very complex

and expensive to build. For the practical case of 6-bit words, the

storage of fy(Y1 ..... Yn ) requires space for 64 n numbers. For two

words this is 4096, for 3 words, 262, 144. Without storage of fy, the

number of calculations required for the optimal demodulators becomes

prohibitively large. Consequently, the optimal demodulators are im-

practical for n > 2, and are practical for n = 2 only when a large digi-

tal computer is available.

It should be pointed out here that this impracticability of the opti-

mal demodulators does not make the results of the first four chapters

useless. The optimal demodulator results give us the limit of possible

improvement of binary PCM demodulation when n words, with specified

correlation, are considered in the demodulation process and thus are

the yardsticks by which we measure future improvements. The optimal

demodulators also give some insight into suboptimal demodulation

schemes, as will be seen in this chapter.

The results of the optimal demodulators show that taking advant-

age of the statistical dependence between nearby PCM words will give

improved demodulation when the correlation between these words is

large. Since the optimal demodulators are rather impracticable, it is

natural to look for some simple suboptimal schemes of using this high

correlation between nearby words to improve the demodulation process.

5O
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Three such schemes are considered and analyzed below.

Smith [$2] suggested the use of f_ s y(klz.(t), YI ..... Y. ), the
_j IZj J J-I

conditional probability of the quantized value, Y., given z.(t) and

in place of fyj (klz(t)), where _ J J
..... would be used for Y.YI, . Yj -i Iz i i

since Y. is not available in the demodulator. This scheme will be re-
i

ferred to as "Smith's Suboptimal Demodulator" in all that follows. For

this demodulator
A A

A A fyz(Y1 ..... Y. , k, z.(t))

fYjlZoy(k]zj (t)' Y1...... Y'j-I) = A J-1 A J
J fzy(Zj(t), Y1 ..... Y. )J-1

A Y.^ [_ Y.A )fY( A Y.^
f

z.ly(Zj(t).Yll ..... J-l'k)fY y(k 1 ...... J-1 Y1 ..... J-1
= J j

A A

f zj( IY1,. Y )fy(_,z.ly( t) .... J-I
J

A A

f iy(Zj(t)lk)fy y(klY1 .... Y. )z_ ' j-1
JJ

fz .(zj(t))
J

A A

since z_(t) is not a function of Y1 ..... Y.
J j-1

Chapter I, equation 1-13 then reduces to

A

..... Y. )
J-l

By the arguments of

A
f. , . (k]z.(t),_l ..... Y.

XjlZjX J J-I
) : K4(z) exp%_

r=l

S ZjrYj(k) dt-_
r j

T B

A

'fy y(kl_l ..... Y.
J j-1

) (5-i)

This is equivalent to the one-word optimal demodulator, with

fyjly(kI_1 ..... 2. ) substituted for fy(k). The values of fy iy couldj-1 J

be precalculated and stored, but the same storage problems that were

discussed in the first paragraph of this chapter exist for j > 2.. A

better method would be to calculate each value of fy iy as it is needed,
i

since, as discussed in Chapter 3, it is given approx{mately by
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A A 1 Jr (k - m) 2

' Yj-1 _. 2_ f
fy Iy( klY1 .... ) --_ exp - _-

j

where _ is a function of _y and the correlation coefficients between the

data samples, and m is a function of my, the p's, and _1 .... , _.
j-1

Equation 5-1 then becomes

m

^fyjIzjy(klzj(t),_l ..... Y. ) = K s(z) exp ___3 - 1 zj rYj(k) rr=l

T B

• dt (k - m) / "_
2¢2 j (5-2)

Equation 5-2 and the expressions for m and _, along with equations 1-1,

1-2, and 1-3, then specify the three suboptimal demodulators proposed

by Smith.

The standard deviation, _, can be precalculated and stored based

on the p's. The only effect then on Smith's suboptimal demodulator of

an increase in the number (j) of words considered is in the calculation

of m. Consequently, as j increases, the complexity of this suboptimal

demodulator changes very little.

^
Since Y. is different for the three versions of this demodulator,

3

only one was analyzed, Smith's suboptimal demodulator corresponding

to the minimum MSE demodulator. A Monte Carlo simulation of this

demodulator for the two word, 3-bit word case was run. For this case

equation 5-2 becomes

^ = Ks(z) exp{ 1 r_ _z2rY2(k)rdt- (k-m)2 _fYi,ziy1(kIz'(t)'Y1)l o---_n :, , 2_z j

T B
(5-3)

and
A

m = my(1 - p) + PY1

= 0_y _rl _ pZ

(5-4)
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Equation i-3 is rewritten as

7
A

Y2 =)-%k
k=0 fY21z2YI

(k I zz(t), ¢rl) (5-5)

When p is close to 1, the term 1 - p2 in the denominator of the negative

part of the exponent tends to drive the exponential to 0 unless k is close
^

to Y_, thus magnifying any errors in previous demodulations. For low
A

p, the first term in the exponent becomes dominant, and the use of Y_
^

has little effect on Y2.

A 2

(k- l-9)-pY1)

_ZzrYz(k)rdt 20-_((1_ pZ)}

T B

Based on the unpromising results on figure 5-1, no further

form of equations 5-3 and 5-4,

fYzlzzY1 (klzz'Y1) = Ks (z) exp --

A

In the Monte Carlo simulation, Y1 is not available until one demodula-

tion has been accomplished, and to insure that the demodulation process

has progressed far enough for initial effects to be smoothed out, four

successive demodulations were simulated for each iteration. The esti-

mators used were by necessity those specified by equations 2-13a and

2-16a. The computer program for Smith's suboptimal demodulator is

given in Table A-3-3 of Appendix III.

Two values of p were run, .9 and .95. The results are given in

Table A-4-5 of Appendix IV and are plotted on figure 5-1. As can be

seen from this figure, the results for 9 = . 9 were better than for p = . 95,

particularly at the higher S/N's. Some test runs at O's higher than .95

and lower than . 9 were run to substantiate this, and it was found that

the performance did deteriorate for high p, but that for p's smaller

than .9 the trend reversed and the performance also got worse. Some

insight into this phenomenon can be gained by considering the combined
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10

ep=.9

x p = .95

Exact data is shown with solid lines. Monte Carlo
results are shown with dashed lines and have a 95%

confidence level of approximately 10%.

0

Figure 5- I.

!J!

3

RMSE, Smith, s Suboptimal Demodulator, m = 3, n = Z.
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simulation of Smith's suboptimal demodulator was run. Considering

more words in each demodulation would give some improvement, but it

is doubtful that the improvement would be significant.

The second suboptimal demodulator considered incorporates a

demodulation scheme suggested by Professor L. L. Rauch. In "Rauchfs

suboptimal demodulator" a weighted average over n words of individual

bits is correlated with the reference signals gl (t) and gz(t) (fl (t) and

fz(t) in the general case} to determine the estimate of that bit. In

equation form

c

G =j_ gl(t) (w z +'''+w. z. +-'-+w Znr}.dtlr _r _r jr 3r nr
T

B

C
G

J z +---+w. z. +...+w Znr)dtzr gz(t)(Wlr Ir jr 3r nr
T

B

(5-71

A fgl (t) if Glr > Gzr

Yjr : (5-8)<
_gz(t) if Gzr > G1r

where r corresponds to the r th bit. The demodulator always estimates

the r thbit of the center word of the sequence ofn words, i.e., n =2j- 1,
n

and the weightings must sum to 1, i.e., 2_ w. = 1, r = 1..... m.
i=l lr

Although the main advantage of this demodulator is its simplicity,

even for large n, the performance evaluation of this demodulator by a

Monte Carlo simulation proved unwieldly. The large number of Gaus-

sian random variables that must be generated for large n requires con-

siderable computer time, and the simulation must first determine the

best set of weightings, w. , by trial and error before the performance
ir

can be evaluated. Here the direct calculation of the optimal weightings

and then the MAE and RMSE appears to be the best approach.

The calculations were made for five words (n = 5), with the third
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word being estimated (j = 3). Words number 2 and 4 were assumed to

have a correlation coefficient of Plz with the third word. Words 1 and 5

were assumed to have a correlation coefficient of p13 with the third

word, and a correlation coefficient of Plz with the 2nd and 4th words

respectively. For this case

fy(Y1 • Yz, Y3, Y4, Y5 ) = fy(Y1, Yz]Y3, Y4, Ys ) fy(Y3, Y4; Ys )

= fy(Y1, Yz, ]Y3) fy(Y3, Y4, Y5 }

fy(Y1, Yz, Y3) fy(Y3, Y_, Ys )

fy( Y3 )

The correlation coefficients between words 1 and 4 (and words 2 and 5),

Pl_, and between words 1 and 5, Pls, are fixed by the above assumptions

and could be determined by the same methods which were used in Chap-

ter 3 for the three word case. The computer program first computes the

probability that a certain sequence of signal bits was transmitted in the
th

r bit position, denoted by PBS_r, _ = 1..... 2 s . These values are

used to compute the optimal weightings 1, Wir, and the probability that
th

r bit is in error, denoted by PBE . Using the PBE 's, the probabilityr r

of an error of a magnitude of k is calculated (denoted by Pk } and this is

used to compute the MAE and RMSE. The computer program to do this

is discussed in Appendix III and is given in Table A-3-4 of that appendix.

The computation was done for 3-bit words, and for three sets of

correlation coefficients ranging from very high to medium. For six bit

words, computation of PBS_r requires an excessive amount of computer

time, as can be seen by considering the computer program in Appendix

III. The computation of PBS_r requires the computation of fy(Y1, Y2, Y3),

The computer program (Appendix III) was set up to select the set of

weightings for a particular bit that minimizes the probability of an

error in that bit. This will not in general give the set of weightings
that will minimize either the MAE or the MSE.
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which is too large to store for m = 6, and therefore, must be recom-

puted each time it is used. Also, in moving from 3 to 6-bit words, the

number of operations to get each PBS_r goes from 45 to 325 , resulting

in too large an increase in required computer time. However, it

should be noted that the bit-error probabilities for the 3 bits in 3-bit

words are the same as the bit-error probabilities for the first three

bits of _-bit words since the PBS's are the same. To get some idea of

the 6-bit word performance of Rauch' s suboptimal demodulator, bit-

error probabilities were assumed for the _4th, 5th, and 6th bit. PBE6

was taken to be the same as with no averaging (i.e., W3r = 1), and PBE4

and PBE s were interpolated linearly between PBE 3 and PBE6. Using

these assumed bit-error probabilities, the MAE and RMSE were cal-

culated for 6-bit data for the same three sets of correlation coefficients

as were used for the 3-bit data. Also, the robustness of Rauch's de-

modulator was determined for 3-bit words by running the demodulator

at the weightings for other S/N's and p's than the values set in the pro-

gram.

The computer results for Rauch's suboptimal demodulator are

given in Table A-4-6 of Appendix IV. These results are also shown on

figures 5-2 and 5-3 (3-bit), figure 5-4 (6-bit) and figure 5-5 (robust-

ness). For reference, the P12 = P13 = 1.0 line is shown 7 db to the left

of the one-word, bit-by-bit demodulator line, and the results of the

minimum MAE or MSE demodulator for p = 1, and n = 1, 2, and 3 are

shown also. As can be seen from these figures, this suboptimal de-

modulator gives much improved performance over the present day (one-

word, bit-by-bit) demodulator, particularly for high values of P12 and

P13 and low values of S/N. In fact, for P12 = -995and P13 = -99 the

performance of Rauch's demodulator is close to or better than the per-

formance of the corresponding optimal 2-word demodulator. It should

be noted that even for very high correlation coefficients the performance

is considerably poorer than for p = 1.0, but this should be expected for

suboptimal demodulation schemes.
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MAE, Rauch, s Suboptimal Demodulator, n = 5, m = 3.
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RMSE, Rauch's Suboptimal Demodulator, n = 5, m = 3.
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Minimum MSE, 3 words, P = 1.0

Minimum MSE 2 words

Error

MSE, 1 word, p : 1.0

Exact data is shown with solid lines. Monte Carlo

results are shown with dashed lines. For Monte

Carlo data, 95% confidence level is approximately

10% for S/N up to 6 db and approximately 20% for
S/N = 9 db.
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(_ 1.0 .98 .95

A 1.0 .95 .85

V 1.0 .995 .99

m 1.414 .98 .95

1.414 .95 .85

x 1.414 .995 .99

O z.o .98 .95

0 z.o .95 .85

0 2.0 .995 .99

Solid line is for demodulator set at correct S/N and p's.

Dashed lines show performance when SIN is incorrectly set.

Isolated points show performance when p,_ are incorrectly set.

Figure 5-5. RMSE Robustness,Rauchf s Suboptimal Demodulator,

n = 5, m = 3, Dem. P,z = .98, Dora. P13 = .95.

Actual S/Ndb

0 3 6
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A look at the optimal weightings, w. , in Table A-4-6a of Ap-
ir

pendix IV shows that the consideration of more than 5 words in the de-

modulation process should give more improvement in the bit-error

probability, particularly at the lower S/N' s, higher p's, and for the

first or second bits where the weighting on words l and 5 is fairly high.

Along with this, it should be noted that errors in the first bit (and to a

lesser extent_ the second and succeeding bits) have the most effect on

the absolute error or square error, so decreasing the probability of an

error in the leading bits can significantly reduce the MAE and RMSE.

Therefore, using more words in each demodulation should give im-

proved demodulator performance.

Figure 5-5 shows that the robustness of this demodulator is quite

good, except where the demodulator S/N is more than 3 db lower than

the actual S/N. This is to be expected since the demodulator is then

weighting words l, 2, and 4 and 5 heavier than optimal and therefore

increasing the chances of an error.

For n = l, w must equal i, and Rauch's suboptimal demodulator
!r

becomes the present day, bit-by-bit demodulator. In Chapter 4, it was

seen that the optimal, one-word demodulator gave an improvement in

performance over the present day demodulator, particularly at low S/N.

It would be expected that a similar weighting by fy, which is in essence

what the optimal, one-word demodulator does, would improve the per-

formance of Rauch' s suboptimal demodulator for n > i. This reason-

ing led to the third suboptimal demodulator that will be considered,

which can be described as follows.

H. = w z +-.- + w. z.
jr _r _r jr jr

and

L_n r=l

Let

+ •••+ w z (5-9)
nr nr

_Hj r Yj(k) r dr} %(k)

T B

(5-1o)
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Then the counterpart of the minimum MSE demodulator is given by

2 m _^ 1
Y. = E kh(k[z(t))

k=1

(5-11)

fyj would give the
The use of equations I-I and 1-2 with h replacing iz

counterparts of the minimum P and minimum MAE demodulators.
e

However, only the demodulator corresponding to the minimum MSE de-

modulator (equation 5-Ii) is analyzed here.

A Monte Carlo simulation was used to evaluate the performance of

suboptimal demodulator number three, where the weightings, Wir, had

been determined in the evaluation of Rauch' s suboptimal demodulator.

It was found that better performance could be obtained if the effects of

fy(k) were weighted in such a way that it would have a smaller effect

when the contribution for the other received words was the greatest in

H ( i.e., when the w. were more nearly equal) and the largest effectr lr

when Zjr made the largest contribution to Hjr. In the actual simulation

this was accomplished by weighting H, and equation 5-10 becomes

WI-_- _ _ dt)fy(k)h(k[z(t)) : K6(z) exp HjrY(k)r
r=l

T B

where WT is the weighting factor.

(5-iz)

The best weighting factor was de-

termined approximately by trial and error Monte Carlo simulations.

The weighting factor that gave the least RMSE was not the weighting

that gave the least MAE, in fact the two were considerably different

with the weighting factor for the least MAE being larger. The weight-

ing factors in Table A-4-7 are those that gave the best RMSE perform-

ance, since the version of suboptimal number 3 analyzed was the one

corresponding to the minimum MSE demodulator. It should also be

noted that the addition of this weighting factor adds one more degree of
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freedom to the demodulator, thereby increasing the complexity and

adding to the robustness problem.

The computer simulation was done for five (n = 5) 3-bit words,

with the same assumptions on the correlation coefficients as were used

in the analysis of RaucWs suboptimal demodulator. For this case

fxiX;,x_',x_'l
fx,Ix,, x3(x?lx_',x_l -- fx(X_,' x?

and for Gaussian data this becomes

where

f (x_.-[x_X_) _ 1
xl IXz' x3 Z_--v 0-

_i - 2pZz(l - P*3) - P_30- = _y 1 - P_z

/_(x_'" - m) 2 ]
exp

2_ z f

2 ( )Ply(I-p13) + PlZ-P13 _my+ Pl_ (l-p13) x_"- PlZ 1 plZz - Plz

)12 - PI3

_ pZ x_
12

;:¢ .

x 3 is selected from a normal (my, _y) distribution, x_" and x4 are then

selected from a normal distribution with mean my(1 - Plz) + PlzX_ ' and

standard deviation _y _11 - pl z x_" and x_" are then selected from a

normal distribution with mean m and standard deviation _ as given in

the last two equations above (for x_', x$" replaces x_" in the expression
A

for m). Y3 is formed from equations 5-12 and 5-11. The estimate of

the MAE and MSE and the estimates of the variances of these estimates

are made using equations 2-13a, 2-14, 2-15, 2-16a, 2-17, and 2-18.

The computer program for the simulation of this demodulator is given

in Table A-3-5 of Appendix III and the results of the simulation for the
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same sets of p_.2'sand p13's as were used with Rauch's demodulator are

given in Table A-4-7 of Appendix IV and are plotted on figure 5-6.

Going from bit-by-bit demodulation as in Rauch' s demodulator to

word demodulation as in suboptimal number 3 requires a substantial

increase in complexity in the demodulator. Rewriting the exponential

term in equation 5-12 as

exp

m

{W--_nT_ w _ dt+-..+Wnr _ ZnrYj(k)rdt }r= , ,r Z,r Yj(k) r

T BT B

it can be seen that suboptimal demodulator number 3 requires two cor-

relators whose outputs are f Zirgl(t)dtand f Zirg2(t)dt. These values
T B T B

are then fed into a small digital computer where they are stored and

used with the previous outputs (already stored in the computer) to form

the needed quantities in equation 5-12 (the values of fy(k) and the w. 'slr

would be previously stored in the computer). Then 5_ is formed accord-

ing to equation 5-11. Although this demodulator is more complex than

Rauch' s demodulator, like Rauch' s demodulator the complexity increases

only slightly as n is increased. The user would have to determine if the

added performance justifies the added complexity. The robustness

characteristics should be similar to those of Rauch' s demodulator,

with a slight added problem due to the weighting factor.

Figure 5-7 shows a RMSE comparison of the three suboptimal de-

modulator performances. Smith's demodulator has a comparatively

poor performance except at low S/N's. Rauch's demodulator gives

good performance, particularly for high p's. A considerable amount

of added improvement can be had at the price of added complexity over

Rauch's demodulator with suboptimal number three.

For one optimization criteria there is only one possible optimal

demodulator, but there is no such limit on the number of possible
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Figure 5-6. RMSE, Suboptimal Demodulator No.3, n = 5, m = 3.
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Figure 5-7. RMSE Comparison of the Suboptimal Demodulators, m = 3.
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suboptimal demodulators. Therefore, the three suboptimal schemes

analyzed above do not exhaust the possible suboptimal demodulators

that could be used. However, these suboptimal demodulators do show

that high statistical dependence between nearby data samples can be

used to significantly improve demodulator performance in a practical

way.



CHAPTER 6

CONCLUSIONS AND POSSIBLE EXTENSIONS

In reference SZ, Smith showed that high statistical dependence

between PCM data samples could be used in the demodulation process

to reduce the probability of a word error. In the first four chapters of

this dissertation it has been shown that this improvement in the demodu-

lation is more pronounced when more meaningful measures of demodula-

tor performance are considered, and that the demodulators that mini-

mize the mean absolute error or mean square error show the same

improvement as the minimum-error-probability demodulator that

Smith considered.

Chapter 5 points out that high correlation between data samples

can be used suboptimally to significantly improve PCM demodulation.

Although the results are not as good as the optimal demodulators for

the same number of words considered in each demodulation, the com-

plexity of the suboptimal demodulators will not increase to the same

degree as the optimal demodulators when the number of words (n) is

increased. Consequently, two of the suboptimal demodulators investi-

gated were able to use a large number of words easier than the optimal

demodulators could use two words, and therefore get better perform-

ance than the optimal demodulators with less complexity.

All of the results of the first five chapters are restricted by the

three main assumptions made in the introduction, namely, the assump-

tion of Gaussian, bandlimited, white noise, the assumption of independ-

ent additive noise, and the assumption of Gaussian data. Without the

first two assumptions the derivation of the expression for fy.iz(klz(t))
J I

becomes far more complex and may not even be possible. Hence the

analytic description of the optimal demodulators may be very complex

69



7O

or impossible. This does not necessarily mean that a high statistical

dependence between data samples could not be used to improve the de-

modulation process, but schemes of using this dependence will not be

as obvious. However, if some method of doing this is invented, it may

be possible to evaluate the performance of the demodulator by an appli-

cation of a Monte Carlo simulation on a digital computer similar to that

used in the restrictive case considered in the first five chapters. All

that is necessary is a method of generating signal and noise samples

from the proper distributions and a program that simulates the opera-

tion of the demodulator in discrete time.

As was pointed out in the introduction, the assumption of band-

limited Gaussian noise is a fairly good one. Maintaining this assump-

tion then, the case of multiplicative noise (random bias in the trans-

mitter or the channel) could be analyzed by Monte Carlo methods simply

by forming the proper combination of signal and noise in the computer

before the simulated demodulation. Again, the methods of using high

correlation between data samples in the demodulation process may not

be apparent, but a Monte Carlo simulation may give some insight into

this. Simple suboptimal schemes such as Rauch's demodulation method

may show an improved performance over present day methods.

The assumption of Gaussian data was not used in the derivation of

the expressions for the optimal or suboptimal demodulators, but rather

the data distribution entered into the demodulator description as the

weighting by fy(Y1, .... Y.3-I' k, Yj+I ..... Yn ) or fy(Y1 ..... Yj-l' k) or,

in the case of Rauch' s suboptimal demodulator, not at all. Certainly

the specific results of Chapters 4 and 5 are good only for Gaussian data,

but the demodulation schemes (both optimal and suboptimal) should be

equally valid for data from other distributions, and if expressions for

the multivariant probability density function of the data are available,

the specific performance of the demodulators could be obtained by the
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same Monte Carlo simulation (or direct computation in the case of the

present day demodulator and Rauch's suboptimal demodulator) as used

in Chapters 1 through 5.

In addition to extending the analysis of optimal and suboptimal

binary PCM demodulators to other forms of noise and to data from

other than a Gaussian distribution, several other extensions appear

worthwhile.

Although Smith's suboptimal demodulator did not give an improve-

ment in performance worthy of the added complexity over the present

day, bit-by-bit correlation demodulators, this does not mean that the

idea should be abandoned. Some weighting on the influence of _1 may

give better results for the case of very high correlation between data

samples. This, however, would result in some added complexity and

the robustness characteristics of the demodulator for changes in p

might not be desirable. Combining Smith's demodulation scheme with

Rauch's scheme is another possibility for improved demodulation.

This is equivalent to substituting fyjlzjy(klz.,j _1, .... _'j-1) for fy(k) in

suboptimal number three. The added complexity over suboptimal
A A

number 3 is slight, and for the higher values of S/N (where Y1 ..... Y.
j-i

are very accurate) the improvement in the demodulation may be worth-

while. This could be evaluated with a Monte Carlo simulation as was

done with suboptimal number three.

Improved computation schemes or faster computers would allow

a more accurate determination of the performance (and the optimal

weightings for the last three bits) of Rauch' s suboptimal demodulator

for six-bit data. However, the weightings on the first three bits (which

are the same as in the three-bit case) have the most pronounced effect

on the MAE and RMSE, so that approximate results of Chapter 5 should

give a very good indication of the demodulator performance. The im-

provement that could be gained by considering more than 5 words in the
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demodulation with Rauch's demodulator would be a meaningful extension,

but it is doubtful that the direct computation would be feasible due to

the difficulty in evaluating fy(Y1, Y2, Y3, Y4,Y5 ). However, theamount of

improvement could be evaluated approximately with a Monte Carlo

simulation.

For Gaussian data the probability that gl (t) was transmitted in any

bit position is . 5, so weighting by this probability in Rauch's demodu-

lator offers no benefit. However, if the data distribution is skewed,

and G in equation 5-7 by the probability thatthen weighting Glr 2r

Yjr = gl (t) and Yjr = g2(t) should improve the demodulation, particularly

for r = 1 or 2 where the improvement has the most effect on the MAE

and RMSE.

The extensions mentioned above may improve the suboptimal de-

modulators discussed in Chapter 5, but the amount of improvement

would not be expected to be substantial. Some entirely new suboptimal

demodulation scheme may be invented that would give good performance

and yet be practical to build, and certainly this possibility should not

be dismissed. However, Rauch's suboptimal demodulator seems to be

the only logical way to take advantage of a high statistical dependence

between nearby data samples when the demodulation is accomplished

bit by bit. And suboptimal number 3 is the logical extension of Rauch _s

scheme to word-by-word demodulation.

Up to this point we have not discussed the possibility of the use of

a high correlation between nearby PCM words after one-word bit-by-bit

demodulation. This would allow demodulation with equipment now on

hand and improvement at some later time. This post-demodulation

improvement of the demodulated data could be done in two ways, bit by

bit or word by word. In bit-by-bit demodulation improvement, the de-

modulated bits in a particular bit position would be compared over suc-

cessive words to improve the demodulation of that bit. However, it is
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seen that this is almost equivalent to Rauch I s demodulation scheme and

in fact, can do no better than Rauch ts demodulator, and therefore offers

nothing very new except the ability to improve the demodulation while

still using present day equipment. In word-by-word post-demodulation

improvement, the demodulated words would be compared in some

manner (and possibly weighted in some way by fy(Y1 ..... Yn)) to im-

prove the demodulation of Y.. A simple yet possibly efficient way of
J

doing this would be to use a weighted average (as in Rauch's demodu-

lator) of the successive demodulated words to determine the new de-

modulated word. The extension of this to a somewhat more complex

but possibly more efficient method would be to then weight (as in sub-

optimal number 3) this weighted average by fy(Yj). The evaluation of

these schemes of post-demodulation improvement might possibly be

done directly, but in any event could certainly be done by Monte Carlo

methods.

It appears that unless a radically different demodulation scheme

is hit upon the most fruitful extension of this dissertation is in the area

of post-demodulation improvement.



Appendix I

W_

CORRELATION COEFFICIENTS FOR BUTTERWORTH

DATA

mth order Butterworth data is data that results from the passage

of white noise through a Butterworth filter and has an essentially flat

power spectrum out of some break frequency, fI' and beyond fI the roll-

off rate is 6 db per octave for first order data, 12 db per octave for

second order data,

is [M3]

fI

Letting x = Z_
S

Smith [M4]

etc. For ruth order Butterworth data,

S(f) =

where f is the sampling frequency,
S

derived the following expressions for p(-r),

For first order data

the spectrum

McRae and

where _- = 1/f .
S

p(T) = exp (-x)

For second order data

p(T) = _42 exp(-x/_]2 ) COS(X/_-Z - _r14)

For third order data

p(T) = (1/2) exp(-x) + exp(-x/Z) cos (.866x - _/3)

McRae has tabulated the required sampling rates for various per-

centage errors [M3]. If we specify a sampling rate such that the inter-

polation error does not exceed the quantization error from the coding

of the analog data into PCM, then the required sampling rates are those

from McRae's tables for the quantization error.

If we assume that the quantization error is uniformly distributed

from -1/2 to 1/2, i.e.,
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t_ then

MAE

MSE

1, -1/2-<x_ 1/zf(x) = 0, otherwise

¢_ 1/2

g 2 '= Ix If(x) dx : 2 xdx - 4
-co 0

1/2

S 2 '= xZf(x) dx = xZdx - 12

-oo -1/2

RMSE ='xfl]12 = .2887

If we normalize the RMSE by the peak-to-peak signal, then

RMSE

P- P Signal
= .04124 for 3-bit words

RMSE

P - P Signal
= .00458 for 6-bit words

In reference M3, McRae uses the RMSE over the RMS signal to get the

percent error. Assuming sinusoidal data, the RMS signal equals the

peak-to-peak signal divided by 2 _f2 Multiplying the above values by

2 _ we have the following normalized errors:

• 1167 or about 10% for 3-bit words

.01296 or about 1% for 6-bit words.

Using these values, the sampling rates from reference M3, and the ex-

pressions for p, table A-l-1 was prepared• It gives the correlation

coefficient Plz(T), between adjacent PCM words and the correlation co-

efficient, PI3(T), between PCM words i and i + 2.
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TABLE A-I-I

Correlation Coefficients for Butterworth Data

Order of Data

Order of Data

1

2

3

1% Data (6 bit)

Interpolation fs / flMethod Pl z(T)

Ideal

Linear

Linear

11500 .99945 .99891

40 .98855 .95756

19 .97311 .89714

10% Data {3 bit)

Interpolation

Method fs/fI

125

8.1

5.8

plz(T)

.95O98

•79433

•747 57

Ideal

Linear

Linear

p13

•90436

•44942

•28593



Appendix II

GENERALIZATION TO ARBITRARY BIT

WAVEFORMS

Smith [$2] generalizes from equal energy signals with a corre-

lation coefficient of -i to two arbitrary signals f1(t} and fz(t) as follows.

A "correlation parameter", a, is defined by

Let

O/

Z j" f1(t}fz(t) dt

T B

f (f_{t)+f_(t))dt

T B

1

g1(t) = _ (f1(t) - fz(t))

gz(t) = _ _-(f1{t)- fz(t})

gl (t} and gz(t} have equal energies and a k of

TBSr g_(t) gz(t) dt - 4TB_ z (fl(t) - fz(t)}Zdt

T B T B

1 C

Since S z -
TB_ gl(t) Zdt

T B

4T B (fl(t) - fz(t)) zdt

T B

we havek = -l.

If the transmitted waveforms are fl (t) and fz(t), then

z. = fir (t) + t)lr nir(

1
If _ (fl(t) + fz(t)} is subtracted from Zir(t ), then
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Z_r(t) --f. (t) + 1ir nir(t) - _ (fl(t) + fz(t))

= gir(t) + nir (t)

and the results of the computer simulation for signals of +_S/N apply.

Since this is a reversible linear transformation, the results based on

the S/N for the g(t) waveforms are the same results that we could get

for the original S/N for the f(t)waveforms. The results will still be

optimal for the optimal demodulators due to the linearity of the trans-

formation. The conversion factor is then the square root of the ratio

2

of the signal power, Sf,

in the g(t) waveforms.

Sf

S
g

in the f(t) waveforms to the signal power, S 2
g

This becomes

1 1

2 T B I (f_(t)+ f_(t))dt
T B

1
f (f1(t) - f2(t))2dt

T B

112

2

or

(S/N)f = _I---_ (S/N)g (A-2-2)

The use of equation A-2-2 allows the application of the results of

Chapters 4 and 5 to any arbitrary bit waveforms used in the binary

PCM transmission.
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COMPUTER PROGRAMS

The computer programs were written in FORTRAN II [M2] for the

University of Michigan Executive System, which utilizes an IBM 7090

computer. Because the Michigan Executive System utilizes other com-

pilers which use the same library functions as the FORTRAN compiler,

some of these functions are written without a terminal "F" in FORTRAN.

Examples of this are the "SIN", "EXP", and "SQRT" functions. Also

the input/output statements used in the programs are necessitated by

the Michigan Executive System's use of off-line cardreaders and printers.

The basic computer programs used are presented in Tables A-3-1

through A-3-5. The comment statements (a "C" in column 1) give an

explanation of what each part of the program does, which includes the

meaning of the important variable names that are used.

Table A-3-1 shows the program used to compute the MAE and

RMSE for the present day, bit-by-bit, one-word demodulator. The

bit-error probability for each S/N was computed by reading the proba-

bility that a normal (0, 1) random variable is greater than S/N from

standard probability tables. This is then read in as "PR" in the pro-

gram. This program, as were most of the programs, was written so

that any size words could be used, but for m = 3 the values of fy(k)

(P(I) in the program) were read in (from probability tables), instead of

being computed in the program, for more accuracy.

Table A-3-2 shows the general program for the three optimal de-

modulators, and is generalized for any size words and up to 3 words

(n = 3) used in the demodulation. The results of all three optimal de-

modulators are computed at the same time, since equations 1-1, 1-2

and 1-3 all use the values of fyjlz(klz(t)) (P(I) in the program). The
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subroutine for generating Gaussian random numbers was a Michigan

Executive System library function, and was called as RANDND (_y, my,
RNO), where RNO is the starting number for generating the sequence of

random numbers. For a random start, RNO is set to 0, as was done

in all the programs which used random numbers. The programs that

were used to compute the bias and robustness of the optimal demodulators

are not shown since they are obvious modifications of the program in

Table A-3-2.

Table A-3-3 shows the program which was used to estimate the

performance of Smith's suboptimal demodulator. As was mentioned in

Chapter 5 four demodulations or subiterations were made for each
A

iteration to insure that the starting effect of not having Y1 available was

smoothed out.

Table A-3-4 gives the program which computes the MAE and

RMSE for Rauch's suboptimal demodulator. As was discussed in

Chapter 5, a Monte Carlo simulation was not used. Rather, these per-

formance parameters were computed directly. To compute the proba-

bility of a certain sequence of transmitted bits occurring in the rth bit

of the sequence of transmitted PCM words, denoted by PBSir, it was

first necessary to compute the probability of a certain sequence of PCM

werds occuring, fy(Y1,Yz, Y3, Y4, Y5 )_ and then add together all the

fy'S that would give a certain PBSir. As pointed out in Chapter 5,

fy(Y1, Y2_ Y3_ Y4_ Y5 )

fy(Y1, Y2, Y3)fy(Y3, Y4, Ys )

fy( Y3 )

To get the necessary accuracy in the computation of the PBS. 's,
ir

it was necessary to integrate fx(Xl,X z,x3) over the region where each

x. quantizes to the particular value of each ¥.. Integration I by Simpson' s
1 1

i/3 Rule [MI] was used_ with the intervals of integration successively

I The program that does the integration (subprograms CALCI, CALC2_

and CALC3 in Table A-3-4) was developed by Capt. Edward G. Preston.
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split until the desired accuracy was reached (EP1 in the program) be-

tween successive evaluations. The values of fy(Y3) were read in from

standard probability tables. The optimal weightings, Wir, were deter-

mined by computing the bit-error probability (PBEr) for each possible
set of w. 's (no finer breakdown of the w. 's than 01 was made) and

ir ir "

then selecting the set that gave the smallest PBE . Using the PBE 's,
r r

the probability of an error of i was computed, and, as in the program

of Table .4-3-i, this was used to compute the MAE and RMSE.

Table A-3-5 gives the program which uses a Monte Carlo simula-

tion to estimate the performance of suboptimal demodulator number 3.

The weightings, Wir , from the previous program's results, were read

in and used in this program.

These 5 programs are presented here for the benefit of anyone

who desires to extend the work done in this dissertation. The author

does not claim to be an expert programmer, and there are undoubtedly

many small improvements that could be made in these programs to im-

prove their accuracy and efficiency. It should be noted that some effi-

ciency is lost in the generalization of the programs to a general m (and

n in the optimal demodulator program), but this is more than made up

for the programmer in the time spent in the program preparation.
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Table A-3-1. Computer Program, Present Day Demodulator

DIMENSIO_ JC(64_6)eP(64),PP(64_6).PWf6)mPE(64)

C BYPASSES UNDERFLOW ERROR,

CALL FTRAP m

C. SETS CONSTANTS, MM=IrbSY=¢ym_MY=r_mMMl=2
C

READ INPUT TAPE 7eIO_HM,SY_XMY
MMls2iiMM
NM2IMMI-1 ......

C cOMPUTES P(I)=fy(1).
PS=O. - ..........

DO 2 I=$,MM%

X=I=l ....................

P(I)=EXP (',5*((X,XMY)/SY)**2)
2 PS=PS+P(I) - -

_O 3 I=l_MMl

3 P(I)=P(I}/PS .......... "

C COMPUTES JC(Z_K)=yTv÷ S/N.
DO 130 K=I_MM _ ...........

X30 JCfZmK):-I

DO 162I=lRMM2
D0.140 K=I_MH

140 JC(I÷t,K)=JC{I,K) ....
DO 150 K=I,MM

N=MM"K+I

JC(I*I,N)mJC'(I*I.N)*_

IF(JC(I+%.N)) 151_151,150 "
151 JC(I*%.N)=I

GO TO 162
150 JCfI÷I,N)=-I
162 CONTINUE

C COMPUTES PP(J,K)=SUM OF THE PROBABILITIES THAT THE Y'S WERE
C TRANSMITTED SUCH THAT K BITS IN ERROR WOULD GIVE AN ABSOLUTE-
C ERROR OF J.

DO 4 I=I.MMI

DO 4 KmI,MM

4 PP(I,K)=O,
DO 20 J=I,MM2

M=MMI*J

DO 20 I=I_M

N=I÷J -
JJ=O

DO 1O K=I_MM

10 JJ='JJ*(XABSF(JC(I_K)qJC(N_K)})/2
"PP{J,JJ)=PP(J,JJ}÷P(T)*P{N) ......

20 CONTINUE

C SN=S/N_PR=BIT-ERROR PRORAB'ILITY_XMAE=MAE,XMTE=MSEt " '

70 READ INPUT TAPE 7,1_PR;SN
XMAE=O. ...

XMSE=O,
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Table A- 3-1 ( Continued)

C COMPUTES PE(I)=THE PROBABILITY OF AN ABSOLUTE ERROR OF I,
C PW(1)=THE PROBABILITY THAT I BITS ARE IN ERROR,

DO 5 I=I,MM

5 PW(I)=PR**I*(I.-PR}**(MM-I) - -
DO 6 I=lpMMI

b PE(1)=O.

DO 30 I=IwMM2

DO 30 K:_,MM

30 PE(1)=PE(1)÷PP(I,K}*PW(K)

C COMPUTES AND PRINTS XMAE=MAE AND RMSE=RMSE.

DO 40 I=I,MM2
XI=I'l

XMAE=XMAE÷XI*PE(1)

40 XMSE=XMSE÷XI**2*PE(I}
RMSE=SORT(XMSE)
WRITE OUTPUT TAPE 6,50,SN_PR,XMAE_RMSE

C RETURNS TO READ ANOTHER StN AND PR,
GO TO 70

1 FORMAT(IOFIO.7)
5O

51
10o
%01

FORMAT(2X,4HS/N=F6.4,2X_13HP(BIT ERROR)=F12,7,2X,4HMAE=F12*7;

2X_SHRMSE=F12.7)
FORMATtIHI)

FORMAT(b(2X,14))

FORMAT(12_2FS.4)
END
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Table A-3-2. COmputer Program, Optimal Demodulators

C

CALL FTRAP m

C SETS CONSTANTS, MMzn'_NN=n,MMI=2 ,XMY=EI,SY=_.,
RNO=Oo
RN2=O,

69 READ INPUT TAPE 7,11,MMIAAmNN
XMM=M M

XNN=NN

MM$#2t*MM

MM2=MM_-I
XMM2=MM2

XMY=XMM212,

SY=XMY/AA

RSY=I,/SY

C COMPUTES JC(I,K)=YIK ÷ SIN.
DO 30 K=I,MM

30 JC(I,K)=-Z

DO 62 I=I,MM2

DO 40 K=%mMM

40 JCtI+%,K)=JC(I,K}

DO 50 K=%,MM

N=MM-K÷%

JC(I+I,N)=JCfI+I,N)÷I

IF(JC(I*leN)) 51,51,50
55 JC(I÷Z,N)=I

GO TO 62
50 JC(I÷$,N}=-%

62 CONTINUE

C SETS CONSTANTS, LL=NO,OF ITERATIONSRSN=S/NaRHmp,

C A =_ AND B=mFOR NOISE SAMPLES.

70 READ INPUT TAPE 7_13,LL,SN,RH
IF(LL) bgm69,68

68 CONTINUE
READ |_PUT TAPE 7j14,A,B
AE=I,-A**2

A3=I,/(2.*A**2}

G%=A**(NN*MM)tEXP (A3*XMM*XNN*B**2)

RRSC=%.OI(I,0-RH**2)

RRSCR=SQRT (RH*RRSC)
RRSC2=O.5*RRSC '

C COMPUTES WT(I,M)=fy(IeM) ,WW(II=Iy(1) ,W(ll=l/fy(l),
C

GO TO (74e73,73),NN

73 DO 72 I=I,MMt
Y=I'I

X=(Y_XMY)*RSY

DIMENSION JC(64,6)=ER(3),ERSR(3),ERS(3)=ERSS(3)_XM(64)=XMS(64)R
_WT(64,64]eW(64}eWW(64),SYM(3)aX(3),JYT(3]RCU[3m6]=PWR(64p3)mP(64}i
÷YH(3]oHAA(3),HBB(3)IERR(3)_SERR(3]_SDI(3)_SD2(3]wO(3},PC(3),PCC(3]

BYPASSES UNDERFLOW ERROR, ......
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Table A- 3 - Z ( Continued)

75
74

76

C

71

C

C
C

C
C

XM(1),X*RRSCR

72 XMS(1)=X**2*RRSC2

DO 75 I=I,MMI

DO 75 M=loMMI

WT(I,M)=EXP (XM(1)*XM(M)-XMS(1)-XMS(M))

_O 76 I=I_MMI

Y=I'1
W(I)=EXP (,5*((Y_XMY)*RSY)**2)

ww(1)=E.IW(1)

XM=mAND SYM=c FOR x DISTRIBUTION,

XM(1)=XMY

SYM(%)=SY

SYM(2)=S.Y/SQRT (RRSC)

SYM(3)=SYM(2)

A9=XMy,(I,-RW)

DO 71 1:I,3

ER(1)=O.

ERSR(I)=O,
ERS(I)=O.

ERSS(I)=O,
INITIATES EL ITERATIONS

DO 500 LJ.=I,LL

FORMS Yl"'" *Yn' X(1)=Xz= X(2)=xl_

JYT(3)=Y3 .

USS=O,
USSS=O.
DO %40 l=l,hN

X(I)=RANDND(O,,I.wRNO)*SYM(1)+XM(1)

XM(I+I]=A9÷RW*X(1)

JYT(I-)=X(1)÷.5

IF(JYT(1)) 99,130_100
99 JYT(I)=O

GO TO 130

X(3)=x3,JYT{1)=Yz ,JYT(2}=YI ,

%00 IF(JYT(1)-MM2) 130,130,110

110 JYT(1)=MM2

130 J=JYT(1)÷I

cC FORMS Zir AND WEIGHTING. US= VIK, CU(I'K)IZKI e G=WEIGHTING

C DUE TO MODIFIED NOISE DISTRIBUTION, " " "

DO t40 K=I_MM

US=RANDND(O.,I.,RN2)eA*B

IF(JC(J,K)} 136,136,138
%36 CU(IjK)=US-SN ...........

GO TD 139

%38 CU(I,K)=SN'US " -
$39 USS=USS+US

$40 USSS=USSS+US**2 ......
G=GleEXP ((A2*USSS-2.eB*USS)eA3)

C " m .................

c COMPUTES=yjl=(klz(t))AND _z , PWR(I,L) = r___.rZ_r.Yi(_r÷S/N.C , .............
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Table A-Z-3 (Continued)

C PPRI=70,-MAXIMUM PWR(I_I).S/N AND IS USED

C SMALL NUMBERS IN THE COMPUTER AND IMPROVE

CC Plll=fgj Iz(Ilz(t)) ' YHI=YI'

PPR$=O.O
DO 170 I=I,MMI

DO 144 L=I,NN

144 PWR(IeL)=O,

DO 160 K:$_MM

IF(JC(I,K)) 145,145,150

145 DO 146 L=I,NN

$46 PWR(I,L)=PWR(I,L)-CU(L,K}

GO TO 160

150 DO 151 L=I,NN

%51 RWR(IJL)=PWR(I,L)÷CU(L,K}
160 CONTINUE

IF(PPR_-PWR(I,1)) 17n,170,165

165 PPRI=PWR(I,I)

i70 CONTINU_

PPRI=70,-PPRI*SN

DO 171 I=I,MM1

%71 P(1)=W_(1)*EXP (PWR(I,I)*SN*PPRI)

GO TO (leO,172,172),_N
172 DO 174 I=I_MM1

PP=O,
DO 173 J=I_MM1

173 PP=PP÷WT(J,I)*EXP (PWR(J,I)*SN)

174 P(1)=PrI)*W(1)*PP
GO TO flBO,180_175)_NN

175 DO 177 I=I_MM1
PP=O,
DO 176 J=I,MM1

176 PP=PP÷WT(I,J)*EXP (PWR(J,3]eSN]
177 P(1)=P(1),w(1)*PP

180 PP=O,
PS=O.

DO 181 I=I,MMI

PS=PS÷P(1)

IF(P(!)-PP) 181_181_182

182 PP=P(1)
YH(1)=I-I

181 CONTINUE

DO 499 I=I,MMI

499 P(1)=P(I}/PS.

C COMPUTES YH(2)=_ z .
PPP=O.

DO 190 I=I,MMI
PPP=PPP÷P(I)
IFfPPP-,5) 190,191_1qI

190 CONTINUE

191 YH(2)=I-I

TO AVOID

ACCURACY,

VERY
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Table A-3-Z(Continued)

A
C COMPUTES YH(3)=_ •

YH(3)=O.
DO 19E I=I,MMi

D2=I'i

192 YH(3)=YH(3)÷D2*P(1)

C COMPUTES AE z OR AE 4 AND SE z OR SE 4 AND CUMULATIVE SUMS,
C L L

C ER(1)= Z (AE.)_ ,ERS(I}= E (SE.)_

C k=l L 3 K k:l L3 K

C = J =

C PARTICULAR DEMOnULATOR.

DO 502 I=1,3

HAA(I}=O.

HBR(1)=O.

DO 501 K=I,MMI

XK=K-I

XX%=ABSF(XK-YH(I})

HAA(1)=HAA(1)+XXI*P(K)

501 HBB(1)=HBB(I}÷(XXI**2)*P(K)

HAA(1)=HAA(1)*G

HBB(1)=HBB(1)*G

ER(I}=ER(1)+WAA(1)

ERS(1)=E_S(1)÷HBR(1)

ER_R(1)=ERSR(1)÷HAA(1)**2

502 ERSS(1)=FRSS(1)*HBR(1)**2

C STOPS ITERATIONS AND PRINTS HEADINGS.

500 CONTINUE

WRITE OUTPUT TAPE 6,5

XLL=LL
WRITE OUTPUT TAPE 6,20,NN

WRITE _IITPUT TAP_6,6,MM

WRITE OUTPUT TAPF6,3

WRITE OUTPUT TAPE6,2,SN,RH,LL

WRITE OUTPUT TAPE 6,12,B,A

WRITE OUTPUT TAPE6,3 ^ ^

C COMPUTES AND PRINTS RESULTS, ERRIlI=M_E I ,SDI(II=2CMAEI

C ^ ^ ,OII)=RMASEI ,PC(l)=% FOR 2_M_EIcC SERRIII=MSE I ,SDEll)=2=M_EI

C PCC(I}=% FOR 2_M_EI
C

DO 201 I=1,3

ERR(I}=ER(I}IXLL

SERR(I)=_RS(1)IXLL
SDI(1)=2.*SQRT ((ERSR(1)IXLL-ERR(I}**2)/XLL)

SD2(I)=2.*SQRT ((ERSS(I)/XLL-SER_(1)**2)/XLL}

O(I)=SORT (SERR(1))

PC(1)=SDI(1)IFRR(1)*_O0,

PCC(I)=SD2(1)ISERR(1)*IOO.
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Table A-3-2 (Continued

GO T0(203.204.205);I
203 WRITE OUTPUT TAPE 6,$5

GO TO 206

204 WRITE OUTPUT TAPE 6,17
GO TO 206

205 WRITE OUTPUT TAPE 6,18
206

2
3
5

6
11

12

$4
I5
16

WRITE OUTPUT TAPE 6.t6_ERR(Z).SDt(|),SERR(I),SD2([].Q(I)
ERR(I)=ERR(I)ISDI(1)
O(I)=SORT (SERR(I}*S_2(I))

WRITE oUTpUT TAPE 6_21_ERR(I)=O(X)
ERR(I)=ERR(I)_SDI(I)*2,
SERR(I]=SERR(1)oSD2(I)
|FtSERR(I)) 207.207.208

207 O(I)=O.
GO TO 209

208 O(I)=SORT (SFRR(I))
209 WRITE OUTPUT TAPE 6*21.ERR(I).O(I)
201 WRITE OUTPUT TAPE 6.i9=PC(I)wPCC(I)

RETURNS TO READ ANOTHER SET OF DATA.
GO TO 70
FORMAT(3HSN=FS,3.2X_4HRHO=FS,3,2X.15HNOI ITERATIONS=I4]
FORMAT (_HO)

FORMAT (IH1) -

FORMAT(2X,I2_%X_9HBIT WORDS)
FORMAT(12.F12,7,I1)

FORMAT(35HMODIFIED NOISE DISTRIBUTION MEAN=FB,4e2X_3HSD=FB,4)

FORMAT (14,2r8,4)

FORMAT(BFIO,6]

FORMAT(23HMINIMUM PE DEMODULATOR)

FORMAT(4HMAE=F12.7.2X.4H2SD=F12.7.2X.4HMSEmF12=7_2X_4H2SDmF12.Tw

I 5X_SHRMSE=F12.7)
17 FORMAT(23HMINIMUM MAE DEMODULATOR)

IB FORMAT(23HMINIMUM MSE DEMODULATOR) ............
19 FORMAT(BHPEROENT=F8,4,25X,8HPERCENT=F8t4)

20 FORMAT(22HOPTIMAL DEMODULATION- _I_=6H WORDS] ..............
21 FORMAT(4X_F12.7.63XJF12.7)

END ...............
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........... Table A-3-3. Computer Program..Smit_s.Ilamodul_o_.

DIMENSION SU(6)RASE(4),Q(4).JC(64,6)eVS(Se6)wSDHSE(4)eP(64}
-- DIMENSION AES(4Y;SDMAE(4)_PCC(4);PC(4-)oXS2(64)_:SES(-4-_-_SL_S-S(_I-} -

DIMENSION Z(5)
C=-BYPASSES UNDERFLON ERROR; ......................

CALL FTRAP

C .... SETS CONSTANTS. HM,zi_HH_=2m. - XM_'_'_SY_-@,
RNO=Oo

RNtmD; ....................................
400 READ INPUT TAPE 7,tl.HH.AA
-- MMls2**MH .............

XMMI=MM1
....... XMMmMH ...............................................

MM2iMMl-I
...... MM3=MM_I .................

XMM2mMM2

...... XMYmXMM2/2. _ ...........
SY=XMY/AA
RSY=¢,iSY .............................

C COMPUTES JC(I.K)tYlK÷ S/N.
.... DO 30 K=t,HM

30 JCtleK)='I
DO 62 I=I_MR_ ................................
DO 40 K=I.MH

40 JC(I*_,K)=JC(I.K) ................
DO 50 K=t,_M
N=MM-K+I ................

JC(I*I,N)=JCfI*I.N)*I
IF{JC(I*I.N)) 51,51e50 ..........................................

51 JC(I*I.N)=I
GO TO 62 ..................................

50 JC(I÷I,N)=-I
62 CONTINUE ..................

C COMPUTES XS2lll=l/fyll).
DO 63 _=1.MM1 ..........

Y=I'I
63 XS2(I}=..5*((ty'xHY}*RSY}**2) ..................................

C SETS CONSTANTS. LL=NOo OF ITERATIONS. SNmS/NRRHlPlz eRHHeP]3
70 READ iNPUT TAPE 7,¢3;LL.SN,RH.RHH .............

IF (LL) 400e400.70t
701 JCT=O .............

F=RH**2

E=I,'F .......
SYM=SY*SORT rE)

_E=I,/E ....

D=(I_-RH)*XMY

DO 71 I=1.4
...... AES(I)=O. ....
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Table A-3-3 (Continued)
SES(I}=0,

7% SESS(I}=0,

XLL=LL
C INITIATES LL ITERATIONS

DO 500 L=I,LL
C GENERATES THE NEEDED GAUSSIAN RANDOM NUMBERS

DO 600 I=I_4

Z(T)=RANDND(O.,1.jRNO)
DO bOO J=I,MM

600 VS(IJJ)=RANDND(O.,E.,RN%}
C SYM%=¢ AND XMI=mFOR x DISTRIBUTION,

SYMI=Sy

XMI=XMY

INITIATES 4 SUBITERATIONS.

DO 500 M=$,4

COMPUTES X= x z AND Y2=Y z.
X=SYMI*Z(M)÷XM1

J=X+I,5

IFfJ'I) 100_131,111
J=l
GO TO 131
IF(J'MM1) 131p131,1_0
J=MM1

Y2=J-I

IO0

111
120
131

C COMPUTES SU(KI;MZZK.DO 150 K=I,

US=VS(MeK)
IF(JC(J,K)) _44,144,146

$44 SU(K)=US-SN
GO TO 150

_46 SU(K)=US_RN

150 CONTINUE ^

C COMPUTESpS=O.P(1)= fyz[z zgl(I[zz,Yl).

DO 170 I=t,MM%

U=O.

DO 160 K=ljMM
IF(JC(IoK}} 154_154,156

154 U=U-SU{K)
GO TO 160

t56 U=U+SU(K)

160 CONTINUE
GO TO (162,163,163_163_163)_M

162 V=XS2(I)-U*_N
GO TO 169

163 Xl=l'l

V=(XI-XNH)**2*T'U*SN

169 P[I}=EXP (-V)
170 PS=PS÷P(I)

DO 180 I=I,MM%
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180 P(1)=P(I)ZPS

C COMPUTES yH=_z

YH=O.

DO 190 I=I,MM1

_2=I-1

190 YHmYH*D2*P(1)

C

C COMPUTES AND STORES

C L
C SESS(M)= _ (AE1),4
C k=z k

C SETS ¢x AND m x FOR

H=ABSF(Y2-YH)
AES(M)=AES(M}+H

H=H**2

500
C

C

C
C
C

201

202

C

[
2

3
4
P

Table A-3-3 (Continued)

L L

AES(M)'k_,(AP.,) k .SES(M)" k_,(_A_E1)_.

, M=SUBITERATION.

THE NEXT SUBITERATION,

SES(M)=SES(M}÷H

SESS(M)=SESS(M)÷H**2

XNH=D÷RH*YH

SYMI=SYM

XMI=D*RH*X -

=M_EI ^ ,2_M
COMPUTES AND PRINTS AES(1) ,ASE(II=MSEI,SDMAE(I) _E I

SDMSE(1)=2@M_EI,PCC(1)=^__ % FOR @ C(1), % FOR 2_M_EI

O(I)=RMSE_ I REFERS TO THE SUB!TERATION,
DO 201 I=1,4

AE_(1)=AES(1)/XLL

ASF(I)=SES(1)IXLL

SDMAE(1)=2.*SQRT ((ASE(1)-AES(1)**2)/XLL)

PCC{I)=SDMAE(1)/AES(1)*IO0,

SDMSE(1)=2.*SORT ((SESS(1)/XLL-ASE(1)**2}/XLL)

O(1)=SORT (ASE(1))

PC(1)=SDMSE(1)IASE(I)*IDO.

WRITE OUTPUT TAPE 6,5
WRITE OUTPUT TAPE 6,6,MM

WRITE OUTPUT TAPE 6,3
WRITE OUTPUT TAPE 6,7
WRITE OUTPUT TAPE6,IT,SN,RH,LL

WRITE OUTPUT TAPE 6,14

DO 202 I=1,4

WRITE OUTPUT TAPE 6,$5, I,AES(1),SDMAE(1),PCC(I),ASE(1),
I SDMSE(1),PC(1),O(1)

RETURNS TO READ ANOTHER SET OF DATA.

GO TO 70
FORMAT(616)

FORMAT(3HSN=FS,3,2X,4HRHO=FS,3_2X,6HRHD13=FS,3_,2X,
1 15HNO. ITERATIONS=f4)

FORMAT(IHO)

FORMAT(BE14.6)

FORMAT(IN1)
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Table A-3-3 (Continued)

6 FORMAT(2X,I2,1X,gHBIT WORDSJ
7 FORHAT(28HSUBOPTIMAL DEMODULATOR NO, 2) ...........
8 FORHAT(2X,r2.4X,4HMSE=F12,7_2Xo4H2SDsF_2tTm2X_SHRHSEIFI2tT)
9 FORMAT(3Xm8MPERCENT=F12,7) ...........

11 FORMAT(12.FI2,7JI2)

13 FORMAT(14,3F8,4) _ "
14 FORMAT(2X,3HNO,,IOX,3HMA_,IOX,3H2SDalOX,3HO/O_IOXo3HHSE_IOW_

1 3H2SD_IOXJ3HO/ORIOXe4HRMSE) ............

15 FORMAT(2X_I2,6Xm7F13*7)

16 FORMAT(2OHSUBOPT, DEMOD, NO, 1) ....
17 FORMAT( 3HSN=FS,3,2X,4HRHO=FS_3m2XelSHNOt ITERATIONS=I4)

END ......
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Table A-3-4. Computer Program, Rauch's Demodulator

DIMENSION XS(64), JC(64,6),NN(2,32), I I (_),PS(32,6),PMt2),PSS(6)
SW(32jS)jXXS(64)wWT(512)jPE(6),PER(63)IP(777)

BYPASSES UNDERFLOW _RROR,

50
62

C
C
C

W(I*lsN)=W(I*I.N)+I,

IF(W(I*I,N)) 51.51,50
W(I*%_N)= 1,
GO TO 62
W(I*IeN)=-I,
CONTINUE

COMPUTES AND STORES

400

441

5-BIT WORDS,

I X Z

I Z

P(1)=_ e dx.

B=SQRT (1.f6.2832)*,01
P(389)=.5
P(390)=,496
X=.055

DO 400 I=391,777
P(I )=P( I'I)-B*EXP (',,5*It*2)
X=X+,01

CONT INUE
DO 441 I=1,,388

N=778-I
P(I )=I...P(N)

C
C

C

READ INPUT TAPE
405 REAU INPUT TAPE

READ INPUT TAPE
MMI=2eeMM

MM2=MM_/2
MM3sHMI-1

C COMPUTES JC(I_K)= yIK÷S/N.
DO 70 K=I#MM

70 JC($eK)=-1

DO 72 I=I_MM3

DO 80 K=I,MM

7,40_,XS
7,402,RM,RHH,XMY,SY,MM

7,950,XLIM

SETS CONSTANTS. XLIM= ACCURACY LIMIT, _S(1)=%/f¥

RHmpIz,RHH=PI3 ,XMY=m_ SY=_y,MMcn-_MMI=2"';

(1)e

5].

CALL rTRAP

C COMPUTES W(I,K)=YIK÷ S/N FOR
DO 30 K=Io5

30 W($,K)=-$,
DO 62 I=I,31

DO 40 K:1,5

40 W(I*%,K)=W(I;K)

DO 50 Kml,5
N=6-K
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......................... Table A:3-4 (Cgntinued)_ .................................

-:B_ ....... JC(I_I-*K)wJC(I,K) ...................................................
DO 8% _=_=MM

.......... NmHM.-K, 1 .................................

JC(X*I,N)mJC(I*I_N)+I
.......... IT(JC(i_ImN)) 82,82o81 ............................

82 JC(I*¢,N)= 1
..... _ GO-T072 ........................

81 JCtI*I.N)=-I
-_2 --CONTINUE ...................................
C SETS CONSTANTS TOR THE INTEQRATIONo

............. E=I_*2;eRH**2*(1.*RHN).RHH*t2 ...............
TII_RH**2

.......... S=I,Ir .......
SZ=SY**2

........ VS,SZ,r .....
SX=SZ*E*S

....... Sl=_5/SZ " "
$2=_,5/YS

..... S3=_I_ISX ......
TI=($,-RH)*XMY

........ F2IRHtflo-RHM)*S
F3=(RH*t2=RHN)*S

...... F4=XMye(II-F2*F3)
EP3=XLIM

..... EP2_EP3*IO,
EPIIEP2*IO,

C COMPUTES wT(Mx)=f_(KmJ,I) BY
C JL

-C--:CALC_ CALLS ON THE INTEGRATION
DO 110 K=ImMM1

..... XK=K
Z=XK"I''XMY

....... DO 110 J=loMMI_
XJlJ
Y=Xj-I.-XMY
DO 110 I=I,K

.......XI=I

X=XI*%.-XMY
......... MX=K*G4*J*8*I-72 .................

WT(MX)= CALCI(XeYe2_SI,S2,S3,EPI=EP2mEP3mFIeT2_F3_P4_RM)

INTEGRATION OFf 1ZsY}X);
x

SUBPROGRAM (ATENDOIP!PROORAM-T

--_10 CONTINUE ..............

C COMPLETES COMPUTATION OT WT(MX)=fy(IjJRK) AND PRINTS RESULTSt
........ DO 111-I=I,MM3 ..............

N=I*$

.......... DO 111-_mIRMMI ..................
DO 15t K=N_MMI

....... MXileG4+j,B_K,72 ......
MY=Ke64+J*B+.T.72

--'I_ WT'{MX)=NT(MY}. .........
WRITE OUTPUT TAPE 6,tO1mWT
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Table A-3-4 (Continued)

C COMPUTES AND PR!NTS
...........D0- 470--T(.W_

Nt_

PS(I_K)zPBS_K

DO 4$_ lz%,HMI
........l r (Q-cFt,_TIW_II2T41T;-_
4_2 NNt_,N)=I

........_t_--_ '
GO TO 4%5

-41,-3 NN{2_-_=]
MmM.$

4[5CONTINUE ....................
DO 450 1.1m_6
PS(I;K),O_ ....
DO 416 KKmle5

- 416 II(KIOU.5*W|-|mKK).[;_ .....
DO 450 M%!IaMM2

" L=II(_) ....................
JIINN(L,MI)
DO 45_-M2=%mMM2 ...................
L=II(2)
J2mNN(L,,M2 ) ....................
DO 450 M3m_.aMM2

" L-lie3) .......................................
J3=NN(L,M3}
MX,, Jl* 64 _LI2* 8 _;J3,,72 ..............................
A=WT(Mx)*XS(J3)
DO 450 M4-SI,MM2 ..........................
t=ll(4)

......... _4=NN(L,M4) ............................
DO 450 MS='I,MM2

JSzNN(L_MS}
........... MXmj3.64.j4,B_jS&72 ...................................

PS( ] 4,K ) =PS(I _K)*AwWT (MX)
-450 CONTINUE: ............................................

PSS(K)=O,
" DO 455 l=i_iG .................................

NNNz33-1
-_ PS(NNN,K)tPS( I _K} .......................

PSS(K) =PSS(K)*PS(|_Kt6PS(NNNRK)
455 CONTINUE ............................

DO 460 Iz1.32
460" PS(I,KI=PS(I_K)/PSS(K) ......................

WRITE OUTPUT TAPE 6m101R(PS(I_K),Izto32)
470 CONTINUE ..........................
C COMPUTES XXS(I)=f,(I),

Z_l .......... X .........................................
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Table A-3-4(Continued)

N=(ABSF(ZZ-XMY}-,S}/SY*%00._389.S
XXS($|,P(N) ........
XXS(MMI),XXSI%)

....... XB.XXS(1) ....
DO 830 I=2.MM2

..... ZZ.I'I
Nm(ABSF(ZZ-XNY)-,S)/SY*IOO._3B9._

" J=MMl-I+l
XXS(I)NP(N}'XB

...... XXS(J}.XXS(I)
XB=XB,XXS(I)

830 CONTINUE
C READS IN SIN AND SPACES PR|NTER, k BLANK CARD
C "THE PROGRAM TO _TkTEMENT 405.

399 READ INPUT TAPE 7o40_eSN

..... IF(SN) 405_405,406
406 CONTINUE

IN THE KTM BIT,

(W(I,2)*W(I,4))*WZ*W(I,3)eW3)wSW*WI-Z;-3-)-

C AND PE(K)= THE PROBABILITY OF AN ERROR
.... AB=SN*IO0,

DO 500 Kzl_MM
- - PM(2)=100.

w3=1'02
DO 740 L=1,4$
W3=W3-.02
W2=(1.-W3)*;_
W1=O.

N=tL_I)I2
PH(%)=IO0.
DO 700 LL=I,N
SW=AB/SQRT (2.*(Wl**2*W2**2)*W3**2)

" PP=O,
DO 600 I=$,16
X= ((W(I,I)*WIIJS})*W%÷
J:X*389,5
IFtJt 615,61[.612

611 J=l
--GO TO 600

612 IF(J-777) 600.600e62_
621 J=777
600 PP=PP*PS(I,K)*P(J}

PP/PP*_.
IFtPP.PH(1)) 710.750,720

'710 PM(1)=PP
WW3=W3

.... WW2mW2 ....
WW$=WI

720 W2=W2-.01

WRITE OUTPUT TAPE 6e411 ............................

C COMPUTES AND PRINTS WWW1ZWlKe " ETC,eTHE BEST WEZGHTINGS
C ......................

RETURNS
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Table A-3-4 (Continued)

7OO

73O

740

5OO

C

810

820

C
C

805

2
3
5
101
401
402
404

411
950

WI=WI*.O_
CONTINUE

IF(PM(1)-PM(2)) 730,730,740
PMtE)=PM(1)
WWWI=WW1
WWW2,WW2
WWW3=WW3

CONTINUE
PE(K)=PM(2)

WRITE OUTPUT TAPE
WRITE OUTPUT TAPE

COMPUTES AND PRINTS PER(J)=
DO 820 J=I,MM3
PER(J)=O.
M=MM1-J
DO 820 I=I,M
N=I*J
PR=L.
DO 810 KK=%,MM

6,401,WWWI,WWW2,WWW3
6,10t,PE

THE PROBABILITY Or

XJ=(XABSF(JC(I,KK),JC(N,KK)))I2
PR=(PE(KK)*XJ*(I.-XJ)*(I.-PE(KK)))*PR
PER(J)=PFR(J)*PR*(XXS(1)÷XXS(N))
CONTINUE

WRITE OUTPUT TAPE 6,tOI,PER
COMPUTES AND PRINTS XMAE=MAE AND RMSE=RMSEe THEN
TO READ A NEW S/N,

XMAE=O.
XMSE=O.
DO B05 I=I,MM3
Xl=I
XMAE=XMAE*XI*PER(1)
XMSE=XMSE ÷PFR(I}*XI**2

RMRE=SORT(XMSE)
WRITE OUTPUT TAPE 6,3
WRITE ()UTPUT TAPE 6n2,SN,RH,RHH,XMAE,RMSE
GO TO 399
FORMATtlX_F6,4,2X,F6'4,2X,F6,4,4X,FIO,Tm2XoF$OIT)

AN ERROR Or_'J_ "

RETURNS

FORMAT(1X,3HS/N,SX,3NRHO,SX,SHRHO13,6X,3HMAE_?X=4HRMSE)
FORMAT(IN1)
FORMAT(8E14.7) ...........
FORMAT( 8R10.5)
FORMAT(4FIO.5,12)

FORMAT(lOTtO)
FORMAT(IHO) ....

FORMAT(5E14.7)
END
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Table A-3-4 (Continued)

C THESE 3 SUBPROGRAMS EVALUATE THE TRIPPLE
C BY SIMPSONfS 1/3 RULE,
C THE INTEGRATION IS DONE AS
C
C
C
C
C
C

C

230

236"

INTEORAL

240

246

256

CALC3(Y,Z}= I fx_z(XJY, Z)dX, - .............
w

CALC2(Z)= /fyIz(YIZ)CALC3. (Y,Z)dY, ....................

CALC_,_ fz(Z) CALC Z (Z)dZ.

IrUNCTION CALCI(X,Y,2.$1.S2.S3,EP1.EP2eEP3,FI,Ir2,r3,r4)RN_
A=Z-,5

8=Z+'_ ......................

C= EXP (SI*Ae*Z}*CALC2(X,Y,A.S2,S3mEP2mEP3,FI#F2elr3elr4mRH)
D, _XP (SI*B**2t*_ALC2(X.Y,B.S2,S$,EP2mEP3,rl;F_;F$)P_-,lt_-
SUM=C*D
EPSIEP[ ...............
PSUM4zO,

00 250 I=1,8 ..............
H=l,/(2.**I)
k=2**I.1 ...............

SUM2=PSUM4*,5
TSUM4mO, .......
DO 230 N=I,L,2
ZN=N ............

E= A_ZN*H

E= EXP (SI*E**2)*CALC2(X.Y,EjS2.S3)EP2iEP3_FIeF2_r3_F_¥11tN_.
TSUM4=TSUM4_4.,E
PSUM4zPSUM4÷TSUM4
IF(I-%) 236,236,240

ZI=(H/3,)*tSUM*SUM2_TSUM4)
GO TO 250
Z2:(H/3,)*(SUM*SUM2*TSUM4)
DIIrA=Z2-Z1

IIr(ABSF(DIFA)-EPS) 256,246+246
Zl=Z2

CONTINUE

OONTINUE

CALCI'Z2
RETURN

END

.......... i

VUNCTION
A:Y-,B
B:Y*,5

XMZzlrl+RH*Z
C: EXP
D: EXP

CALC2 (X, Y, Z, S2, S3. EP2. EI_3, r$, F_,irr3; IF4, RN)

tS2*(A-XMZ)**2)*CALC3(X.A,Z,S3,EP3oF2eF3;F4)
(S2*(B&XMZ)**2),CALC3(X,BeZ_I3_B1D3_r2slr3;F4)
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Table A-3-4 (Continued)

........ EPS#EP2 .....................................

SUMwC*D

DO 250 1=1.8
.......... N=1;7{2;**I-) .....................................................

L=2**l-1
SUM2=PSUH4*;5 .........................................
TSUM4=O,

.... DO 230_N=_-;L;2 ...........................
ZNzN

.... E=AeZN*H .......................................................
_= EXP fS2*(E-X_Z)**2)*CALC3(XeEeZe$3.mEP3wF2o_3_F4)

230 TSUM4aTSUM4;4,eE .......................
PSUH4=PSUM4*TSUH4

-IF(I-l) 236e236,240 ........................
236 ZlB(H/3,)e(SUMeSUM2*TSUH4)

GO TO 250 ................
240 Z2=(H/3,)*(SUH+SUH2÷TSUH4)

OIFAmZ2.Z _ ..............

IF(ABSF(DIFA)*EPS) 256w246m246
246 ZI=Z2 ..........
250 CONTINUE

256 CONTZNUE .........

CALC2=Z2
RETURN ............
END

FUNCTION CALC3(X.Y,Z,S3j|P3;F_#F3;F_}"
XHYZ=F4"F3*Z÷F2eY
A=X*,5 ..........
B=X*,5
C= EXP (S3*(A_XMYZ)**2) ...........
D= FXP (S3*(B*XNYZ)**2)
_PS=EP3 .........
SUM=C*D

PSUH4=O. .............
DO 250 I=1,8

H=l.l(2***I) ..........................
L=2.*1-1
SUM2=PSUV4.; 5 .......
TSUM4=O.

..... D0-230 N=I,L;2 ...............
ZNmN

.... E= A*ZN*N ...................
E= EXP (S_*(E'XNYZ)**2)

-230- TSUM4=TSUH4*4o*E ...........................

PSUM4mPSUM4eTSUH4
.... [F(I_) 236,236_240 ......
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Table A-3-4 (Continued)

236 ZI=(H/3,)*(SUH+SUH2+TSUH4)
GO TO 250

240 Z2={H/3,)*(SUN+SUH2*TSUH4)
DIFA=Z2"Z1

]F(ABSF(D]FA)-Eps) 256e2461246
246 Zl=Z2

250 CONTINUE

256 CONTINUE

CALC3=Z2
RETURN
END
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Table A-3-5. Computer Program, Suboptimal Number 3

DIMENSION JCt64,6),CU(Se6),CV(6) eJCD(6)eZ(5)_V$(Se6)eJYT(_)

...... _-IMENSION WI-(6)_W2(6)_W3(6)_P(64)e XS2T_4_

C BYPASSES UNDERFLOW ERROR,

...... CAL_- VTRAP ..... m
C SETS CONSTANTS, MM=n'_MM$=2 ,XMY=mj SY=¢y,

..... RNO=O; ................................ I ..... =--"

RNSsO,
400- READ INPUTTAPE 7,1%_HMP&_ ........................

MMIs2$eMM
...... _MM_mMM1 ........

XMMmMM
.... MM2mMM_$ ...................................

MM3mMM+I
....................................

.... XMM2=HM2 ..........
XMy=XMM2/2,

......... SY=XMY/AA-

RSY=lo/SY

DO 30 K=$_MM
:30 ...... JCt2_K)=-¢ ...........................................

DO 62 I=I,MM2
- DO 40-Kmlm_M ...........

40 JC(I*t,K)=JC(I,K)
DO 50 K=¢#MM ........
N=MMwK+$

.... JC(I,I,N)=JCtI_I;N)*_ ...................................

IF(JC(I÷S,N)) 51,5t,S0
-'3_ ..... JO(I*%,N}=I ..................................

GO TO 62
90- JC(I*$,N)=-$ ...............

62 CONTINUE

C COMPUTES XS2(I)=l#y(I},
DO 63 IIlaMM[

" Y=I'Z ................

6_ XS2(I)=,5*(((Y-XMY)*RSY)**2)
C READS IN INPUT BATA-AND SETS CONSTANTS,'-SN=S/W;'E_mN_-OIr

C ITERATIONS,RH= Pzz ,RHH=pz_ ,WI(1)=Wz I! ET_,,pE.R.=_WEIgMTING ........

C
C FACTOR. SYM AND-SYN ARE THE_'s FOR THE x DI_TRI_B?![ON_ ...............

70 READ INPUT TAPE 7_3;LL_SN_RH,RHH
IF (LL) 400_400_70_

70I CONTINUE .-
READ INPUT TAPE ?_23_W%,W2_W3

RE_D INPUT 'T_PE 7_tO;PER ...................

XLL=LL
............ FiRH_*2 ...............................................

E=%,'F .....................
.........SYMISY*S-O'R_E_ .....................
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Table A- 3 -5 (Continued)

E=I,IE
C=(F'RHH)*E

B=RH*(_.-RHH)*E

A:($,wP+C)*XMY

D:(It-RH)*XMY

SYN=SytSORT ((I,-2,*f*(i.-RHH)-RHH*t2)*E)

T=RSY**2*,BtE
ER=O,

ERR=Or
ERS=O,
VER=O,
VERS=O.
VERSS=O,

C INITIATES LL ITERATIONS

DO 500 L=I,LL
C GENERATES THE NEEDED GAUSSIAN RANDOM NUMBERS.

DO 600 I=1,5

Z(1)=RANDND(O.,t.oRNO)

DO 600 J=I,MM

600 VS(I,J)=RANDND(O,pI,'RN%)

C COMPUTES X1=Xl, ETC.,XN=m x-
C

X3=SY*Z(3)*XMY

XM=D*RH*X3

X2=SYM*Z(2}÷XM
X4=SYMeZ(4]÷XM
XN=A*B*X2-C*X3
Xl=SYN*Z(Z)÷XN

XN=A*B*X4mC*X3

XS=SYN*Z(B)÷XN
C COMPUTES JYT(

JYT(1)=XI÷
JYT(2)=X2*
JYT(3)=X3+

JYT{4)=X4*

JYT(5)=XS÷
DO _40 1=1

IF (JYT(1)

99 JYT(I)=O
GO TO 130

300 IF (JYT(I)
1ZO JYT(I]=MM2

$30 J=JYT(I)*I

136

I)=Y I AND
.5
,5
.5

,5
,5
,5
) 99,130,_00

CU(I,K)=ZIK.

-MM2} 130,130,110

DO 140 K=I_MM

US=VS(I,K)
IF(JC(J,K]) _36,136=_38

CU(I_K)=US-SN

GO TO 140
CU(IeK)=US+SN
CONTINUE
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Table A- 3 - 5 ( Continued)

c COMPU'rES-_(-r)ab(Z[ z(_O)
DO 207 K=_,oMM

-207

2%4

2_,6
2_.8

220

.... : -gVrK_= HjK- .........................

CV ( K ) =W i ( R )* ( CU (_, K ) ,CU (_, K ) ) .,._2 (K)* (C O (_-K)-_.CIS_,W_I-Fgw3rlrIO-*_O-(];K
%)

CONTINUE .........
Y3=JYT(3)
PS=O; ............
DO 220 I=I_MMI

UzO| .......

DO 2%8 K=$_MM

IF(JC(F,K))-2_4,214e2%6

U=U-CV(K}

GO TO 218
U=U,CV(K)
CONTINOE --

V=U*SN*PER-X_2(I)
P(I)=EXP (V)
PS=PSeP(I]
DO 230 I=%_MM$

230 P(I)=P(I)/_S
C COMPUTES YH = Y..

YH=O, 3
DO 240 I=I,MM1

O2=I'%
240 YH=YWeD2*P(I)

COMPUTES AND STORES

ERI=ABSF(Y3_YH)
ER2=ERI**2
VER=VER*ER1
VERS=VERS*ER_

C
C

C

C
C
C

L L L

VER. ,vE.s, ......
k=l = =

VERSS=VERSS*ER2**2 ...........

C STOPS ITERATIONS AND SPACES PRINTER,
500 CONTINUE

WRITE OUTPUT TAPE 6e5

COMPUTES AND PRINTS VERmM_E.VSDI'2_M_E_P_3$W%-FOR2-_I_EC

A A
VERS=M_E, VSD2=2_M_E,PC32= % FOR 2CM_ E, RMSE'RR%3E, .................

-VER=VER/XLL .....
VERS=VERS/XLL
VSD¢=2.*SORT ((¥ERS-VER**2)/XLL)
VSD2=2.*SQRT ((VERSSIXLL-VERS**2)/XLL)

" RMSE=SORT (VERS)
PC3$=VSD1/VER*IO0.

- PC32=VSD2/VERS*lO0,
WRITE OUTPUT TAPE 6,3

.... WRITE OUTPUT"TAPE6_3"
wRITE OUTPUT TAPE 6_21
WRITE OUTPUTTAPE6e6,MM

WRITE OUTPUT TAPE 6,2,SN,RHmRHH_LL
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Table A- 3 - 5 ( Continue d)

WRITE OUTPUT TAPE 6,22jPER

WRITE OUTPUT TAPE 6,24,WE,W2,W3

WRITE OUTPUT TAPE 6,3

WRITE ObTPUT TAPE 6,14
WRITE OUTPUT TAPE 6,15, VER,VSDlmPC31_VERS*VSD2,PC32,RM.RE

RETURNS TO READ ANOTHER SET OF DATA,

GO TO 70

FORMAT(616)

FORMAT(3HSNmF5.3,2X,4HRHO=FS,3,2X,6HRHO13=PS,3e,2Xo
1 15HNO, ITERATIONS=f4)

3 FORMAT(1HO}
4 FORMAT(8E14,6]
5 FORMAT(1H¢]

6 FORMAT(2XtI2,IX,gHBIT WORDS)

7 FORMAT(28HSUROPTIMAL DEMODULATOR NO, 27
8 FORMAT(2X,12,4X,4HMSF=F12,7,2X,4W2SD=F12,7,2X,SHRMSE=F12,7]
9 FORMATf3X,8HPERCENT=F12,7)
10 FORMAT{IOFIO,4)

11 FORMAT(12,F12,7,12}

13 FORMAT(I4,3F8,4]

14 FORMAT( IOX,3HMAE,IOXj3H2SDelOX*3HO/ORIOX_3HMSE,IOX,
1 3H2SDpEOX,3HO/Om_OW,4HRMSE}

15 FORMAT(SX,7FE3.7}

16 FORMAT(2OHSUBOPT, DEMOD, NO, 1)

17 FORMAT( 3HSN=FS,3,2X,4HRWO=FBo3,2X_lSHNO, ITERATIONSII4)

20 FORMAT(BFIO,4)
21 FORMAT(28HSUROPTIMAL DEMODULATOR NO, 3)
22 FORMAT(3X_IOWWEIGHTING=FIO,6)

23 FORMAT(6F2,2)

24 FORMAT(6(3X,_3.2))

25 FORMAT(ISHEXFCUTION TIME=I4,9HMINUTES, F4,_,THSECONDS]
END



Appendix IV

COMPUTATION RESULTS

Tables A-4-1 through A-4-7 give the computational results for

the optimal and suboptimal demodulators. The following symbols,

although used in the main body of this dissertation, are repeated here

for convenience.

n: number of PCM words considered at any one time in the

demodulation process.

m: the number of bits in each PCM word.

S/N: the RMS signal-to-noise ratio.

Plz : the correlation coefficient between adjacent data samples,
x;.'_"and *
i xi+1 "

P13 : the correlation coefficient between alternating data samples,
x* and *

i Xi+z "

N: the number of iterations used in the Monte Carlo simulation.

A: the standard deviation of the modified noise distribution

where importance sampling was used.

B: the mean of the modified noise distribution for importance

sampling.

w. : the weighting factor for the rth bit of the ith word in Rauch's
ir

suboptimal demodulator.

WT: the weighting used in suboptimal demodulator number 3.

All normalized (abbreviated as "Nor." in the tables) values are nor-

malized by dividing by the peak-to-peak signal.

Table A-4-8 gives a summary of the computation times required

on the University of Michigan IBM 7090 Computer to generate the data

in Tables A-4-1 through A-4-7.

I05
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TABLE A-4-1

Data, Present Day Demodulators (Bit-by-bit Correlation)

n m S/N NOR. MAE NOR. RMSE

1 3 .707

1 3 1.0

1 3 1.414

1 3 2.0

1 3 2.83

1 6 .707

1 6 1.0

l 6 1.414

1 6 2.0

l 6 2.83

l 6 3.55

1976

1400

07403

02231

002296

1716

1231

06600

02000

002056

•0001081

2986

2491

1796

09802

03138

2550

•2130

•1537

.O838

•02684

•007920
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n m

2 3

2 3 1

2 3 1

2 3 2

2 3

2 3 1

2 3 1

2 3 2

TABLE A-4-5

Data, Smith's Suboptimal Demodulator

Nor. _^Nqr. N_r.
S/N PlZ M_E /_MAE RMSE

707 9

0 9

414 9

0

707

0

414

0

N

400

8OO

1600

9 4000

95 4O0

95 80O

95 1600

95 4000

11871

083787

O38O46

O1O996

11547

O89814

O42898

011548

01346

008309

004312

001544

01332

009548

005247

001766

17947

14431

O94252

050035

17626

16217

11336

057026

ANOr.
_Rl_SE

01725

01208

01070

007292

01683

01318

01161

007859
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TABLE A-4-6

Data, Rauch's Suboptimal Demodulator

a. Optimal Weighting Factors, m = 3 (w = w w = w ).
4r zr' 5r 1r

S/N

• 707

1.0

1.414

2.0

2.83

.707

1.O

1.414

2.0

2.83

.707

1.0

1.414

2.0

2.83

91z P13

95 .85

95 .85

95 .85

95 .85

95 .85

98 .95

98 .95

98 .95

98 95

98 95

995 99

995 99

995 99

995 99

995 99

WI.__._I

15

12

O9

O5

O4

17

15

12

O7

O4

18

17

14

O9

O6

W21

.19

.18

.14

Ii

O6

2O

18

15

12

O8

21

2O

16

13

O8

w3___l

32

40

52

68

80

26

34

46

62

76

22

26

40

56

72

b. Performance, m = 3.

n m S/N

5 3 .707

5 3 1.0

5 3 1.414

5 3 2.0

5 3 2.83

5 3 .707

5 3 1.0

5 3 1.414

5 3 2.0

5 3 2.83

5 3 .7137

5 3 1.O

5 3 1.414

5 3 2.0

5 3 2.83

P12 P13

95 85

95 85

95 85

95 85

95 85

98 95

98 95

98 95

98 95

98 95

995 99

995 99

.995 99

.995 99

.995 99

wlz wz_____22

15 17

11 16

08 13

04 10

03 06

16 19

14 17

lO 15

06 12

04 07

17 20

17 18

13 16

09 12

O6 O8

Nor. MAE

12610

076975

036931

010691

0010973

10258

055816

024630

0068462

00069637

080245

036012

013487

00347 50

00034044

w 3____2w i_____3

36 09

46 08

58 04

72 03

82 O1

30 II

38 O9

50 07

64 O4

78 03

26 15

30 14

42 I0

58 O6

72 04

W23

.15

.13

.11

.06

04

19

16

13

09

05

19

17

15

12

07

Nor. RMSE

22851

17501

I1972

064111

020520

20381

14585

095001

049710

015845

18122

11711

069558

034883

O1O880

\V3 3

52

58

70

82

90

40

50

60

74

84

32

38

50

64

78
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TABLE A-4-8

Computation Times

Execution Time

Demodulator m n for i00 Iterations

Present Day 3 / 6 l

Optimal 3 l I. 66 sec.

Optimal 3 2 3.0 sec.

Optimal 3 3 II. 8 sec.

Optimal 6 1 ii.7 sec.

Optimal 6 2 41.9 see.

Smith's 3 2 5.0 sec.

No. 3 3 5 3.2 sec.

Rauch' s 3 5

Total Execution

Time

1 mln

34 mm.

22 mm.

7 mln.

5.0 sec.

. 22.3 sec.

1.8 sec

14.2 sec

58.2 see

130 mm. 22.6 sec

Ii mln. 20.3 sec

17 mm. 57.4 see

21 mm. 8.3 sec

Total: 4 hr. 6 min. 30.1 sec.

]-Includes bias and robustness runs.

a Includes bias and robustness runs and run for m = 6 with as sumed

PBE ' s.
r
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